ByConity 内存持续上涨问题分析与解决方案
2025-07-03 20:08:57作者:廉皓灿Ida
问题现象
在 ByConity 0.4.2 版本的 Kubernetes 部署环境中,worker 节点(包括 vw_default 和 vw_write 虚拟仓库)的内存使用量呈现持续上涨趋势,没有明显的阶段性回收现象。每个 Pod 配置的最大内存为 32GB,且系统中使用了 Kafka 引擎。
排查过程
初始排查
技术人员首先检查了以下关键缓存参数的配置情况:
- mark_cache_size
 - cnch_checksums_cache_size
 - uncompressed_cache_size
 - cache_size_to_ram_max_ratio
 
发现这些参数均保持默认配置未做调整。
缓存指标分析
通过执行特定的 SQL 查询,获取了系统中各类缓存的详细使用情况:
SELECT *, formatReadableSize(value) AS cacheSize 
FROM cnch('vw_write', system.asynchronous_metrics) 
WHERE metric LIKE '%Cache%' 
ORDER BY value DESC 
LIMIT 15
查询结果显示:
- ChecksumsCacheBytes 占用约 5GB
 - MergeTreeDiskCacheBytes 占用约 3GB
 - OSMemoryFreePlusCached 显示系统缓存约 2.5GB
 
在 vw_default 虚拟仓库中:
- MergeTreeDiskCacheBytes 占用高达 40GB
 - MarkCacheBytes 占用约 110MB
 - ChecksumsCacheBytes 占用约 68MB
 
关键发现
- 
未压缩缓存问题:系统未显示 UncompressedCacheBytes 指标,表明 uncompressed_cache_size 参数未被配置,导致该缓存无限制增长。
 - 
默认配置风险:
- mark_cache_size 和 cnch_checksums_cache_size 默认各为 5GB
 - uncompressed_cache_size 默认无限制
 
 - 
内存分配:32GB 内存的实例内存使用已达 70%,存在潜在风险。
 
解决方案
1. 配置 uncompressed_cache_size
建议在所有 worker 节点的配置文件中显式设置 uncompressed_cache_size 参数,初始值可设为总内存的 1/3(对于 32GB 内存的实例,建议设置为 10GB 左右)。
配置示例:
<uncompressed_cache_size>10737418240</uncompressed_cache_size>
2. 其他缓存参数优化
根据实际业务需求,可考虑调整以下参数:
- mark_cache_size
 - cnch_checksums_cache_size
 - cache_size_to_ram_max_ratio
 
3. 监控建议
建立以下监控机制:
- 定期检查各缓存指标
 - 设置内存使用阈值告警
 - 监控缓存命中率
 
实施效果
通过合理配置 uncompressed_cache_size 及其他缓存参数,可有效控制内存使用量的持续增长,使系统内存保持在稳定水平。同时,明确的缓存限制也能避免因缓存无限增长导致的内存溢出风险。
最佳实践
- 生产环境必须显式配置所有缓存参数,避免依赖默认值。
 - 根据业务特点调整缓存比例,对于读密集型应用可适当增大缓存。
 - 定期审查缓存使用情况,根据实际使用效果优化配置。
 - 考虑工作负载特征,对于写入频繁的场景需要特别关注 MergeTree 相关缓存。
 
通过以上措施,可以有效解决 ByConity 系统中内存持续上涨的问题,保障系统稳定运行。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
最新内容推荐
 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
105
133
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
161
暂无简介
Dart
568
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
250
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
103
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
446