Apache Arrow-Ballista项目中TPC-H查询失败问题分析与解决
Apache Arrow-Ballista项目是一个分布式查询引擎,近期在其主分支上出现了TPC-H基准测试查询失败的问题。本文将深入分析该问题的根源,并探讨解决方案。
问题现象
在分布式模式下运行TPC-H查询时,部分查询成功执行,而另一部分则失败。具体表现为:
- 成功的查询:q1、q3、q4、q5、q6、q11、q12、q13、q16、q17、q19、q20、q21
- 失败的查询:q2、q7、q8、q9、q10、q14、q15、q18、q22
失败查询报错信息显示列引用问题,例如查询q2报错:"PhysicalExpr Column references column 's_acctbal' at index 9 (zero-based) but input schema only has 9 columns"。
问题根源
经过技术分析,发现该问题与DataFusion版本升级有关:
- 在DataFusion 35.0.0版本中,查询能够正常执行
- 升级到DataFusion 39.0.0版本后,问题开始出现
深入调查发现,问题源于DataFusion中的一个优化规则变更,特别是与JoinSelection规则相关。该规则在创建执行阶段时尚未完全支持投影操作,导致列引用出现偏差。
解决方案
针对这一问题,社区提出了两种解决方案:
-
移除特定优化:在execution_stage.rs文件中,注释掉可能导致问题的优化代码行。这一改动直接解决了列引用不匹配的问题。
-
注册缺失函数:部分查询失败还因为缺少必要的标量函数注册。需要在execution_loop.rs中补充注册date_part和substr等函数,确保查询执行时能够找到这些函数实现。
技术启示
这一问题的解决过程为我们提供了几个重要启示:
-
版本升级需谨慎:即使是小版本号的升级,也可能引入不兼容的变更,特别是在分布式查询引擎这类复杂系统中。
-
优化规则的边界条件:查询优化规则在提高性能的同时,必须考虑所有可能的边界条件,特别是涉及分布式执行计划时。
-
测试覆盖的重要性:TPC-H基准测试作为标准测试套件,能够有效发现这类执行计划问题,强调了全面测试的必要性。
通过解决这一问题,Arrow-Ballista项目在分布式查询处理方面又向前迈进了一步,为后续版本的功能完善和性能优化奠定了基础。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00