DataFusion-Ballista项目中TPC-H查询失败问题分析
问题背景
在DataFusion-Ballista分布式查询引擎的最新版本中,开发人员发现执行TPC-H基准测试时出现部分查询失败的情况。具体表现为:在分布式模式下(使用ballista-cli连接ballista-scheduler,并配合ballista-executor运行)时,部分TPC-H查询能够成功执行,而另一部分则出现错误。
问题现象
成功执行的查询包括:q1、q3、q4、q5、q6、q11、q12、q13、q16、q17、q19、q20、q21;失败的查询包括:q2、q7、q8、q9、q10、q14、q15、q18、q22。
错误信息显示为列引用问题,例如在查询q2中出现的错误:"PhysicalExpr Column references column 's_acctbal' at index 9 (zero-based) but input schema only has 9 columns",这表明在执行计划生成过程中出现了列索引越界的问题。
问题根源
经过技术分析,这个问题与DataFusion版本升级有关。具体表现为:
- 在DataFusion 35.0.0版本中,所有TPC-H查询都能正常工作
- 当升级到DataFusion 39.0.0版本后,部分查询开始失败
深入研究发现,问题源于DataFusion核心中的JoinSelection规则优化器。这个优化器在创建执行阶段时,尚未完全支持投影操作(projections),导致在分布式执行计划生成过程中出现了列引用错误。
解决方案
目前有两种可行的解决方案:
-
临时解决方案:在ExecutionStage的构建过程中,暂时移除特定的优化规则。具体来说,可以注释掉相关代码中触发问题的优化逻辑,这样虽然会牺牲部分性能优化,但可以确保查询正确执行。
-
完整解决方案:需要等待DataFusion核心团队修复JoinSelection规则对投影操作的支持问题。同时,还需要在Ballista的执行循环中注册一些缺失的标量函数,如"date_part"和"substr"等,以确保所有TPC-H查询都能正常执行。
技术影响
这个问题反映了分布式查询引擎开发中的一个典型挑战:当底层计算框架(DataFusion)进行重大更新时,上层分布式调度系统(Ballista)需要相应调整。特别是在执行计划优化和分布式任务切分阶段,需要确保优化后的计划在分布式环境下仍能正确执行。
最佳实践建议
对于使用DataFusion-Ballista的开发者和用户,建议:
- 在升级DataFusion版本时,务必进行全面测试,特别是复杂的多表连接查询
- 关注DataFusion核心项目的更新,了解可能影响分布式执行的变更
- 在遇到类似问题时,可以考虑暂时禁用某些优化规则作为临时解决方案
- 确保所有查询中使用的函数都在执行环境中正确注册
这个问题也提醒我们,在分布式SQL引擎的开发中,执行计划的正确性始终应该优先于优化效果,特别是在优化规则可能引入执行错误的情况下。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









