Kernel Memory项目中实现带参考文献的智能问答方案解析
2025-07-07 12:14:08作者:魏侃纯Zoe
在基于大语言模型(LLM)的智能问答系统开发过程中,如何让系统在提供答案的同时给出准确的参考文献来源是一个常见需求。本文将以microsoft/kernel-memory项目为例,深入探讨这一技术难题的解决方案。
核心问题分析
在Azure OpenAI等商业服务中,"使用自有数据"功能可以自动在答案后附加参考文献。但在开源框架如Kernel Memory中,当通过Semantic Kernel插件进行问答时,系统默认不会保留相关来源信息。这主要是因为插件调用方式会丢失MemoryAnswer对象中的RelevantSources属性。
现有解决方案评估
目前社区提出的临时解决方案是绕过插件模式,采用分步调用的方式:
- 直接调用IKernelMemory.AskAsync()获取原始记忆结果
 - 将MemoryAnswer.Result作为变量传入语义函数
 - 通过Kernel.InvokeAsync()执行语义处理
 - 手动组合处理结果和来源信息
 
这种方案虽然可行,但破坏了插件模式的封装性,增加了代码复杂度。
技术实现细节
要实现完整的带参考文献问答功能,开发者需要理解以下几个关键点:
- 记忆查询层:Kernel Memory的AskAsync方法会返回包含Result和RelevantSources的完整MemoryAnswer对象
 - 语义处理层:Semantic Kernel负责对原始结果进行二次加工和格式化
 - 结果整合层:需要设计自定义数据结构来合并处理后的文本和来源信息
 
优化建议
对于希望保持插件模式简洁性的开发者,可以考虑以下改进方向:
- 扩展插件功能,使其能够透传来源信息
 - 开发自定义Middleware来处理结果合并
 - 设计新的Prompt模板语法来支持来源标注
 
最佳实践
在实际项目中实现该功能时,建议:
- 封装专用服务类统一处理问答流程
 - 设计清晰的DTO对象来传递完整结果
 - 在前端展示层做好来源信息的可视化呈现
 
总结
虽然当前Kernel Memory的插件模式在参考文献处理上存在局限,但通过合理的架构设计和技术变通,开发者完全可以构建出媲美商业服务的智能问答系统。理解各组件间的数据流动是解决此类问题的关键。
随着开源生态的完善,预计未来版本会提供更优雅的内置解决方案。在此之前,本文介绍的方法已经可以在生产环境中提供可靠的实现。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
最新内容推荐
 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
105
133
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
161
暂无简介
Dart
568
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
250
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
103
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
446