Kernel Memory项目中实现带参考文献的智能问答方案解析
2025-07-07 15:30:41作者:魏侃纯Zoe
在基于大语言模型(LLM)的智能问答系统开发过程中,如何让系统在提供答案的同时给出准确的参考文献来源是一个常见需求。本文将以microsoft/kernel-memory项目为例,深入探讨这一技术难题的解决方案。
核心问题分析
在Azure OpenAI等商业服务中,"使用自有数据"功能可以自动在答案后附加参考文献。但在开源框架如Kernel Memory中,当通过Semantic Kernel插件进行问答时,系统默认不会保留相关来源信息。这主要是因为插件调用方式会丢失MemoryAnswer对象中的RelevantSources属性。
现有解决方案评估
目前社区提出的临时解决方案是绕过插件模式,采用分步调用的方式:
- 直接调用IKernelMemory.AskAsync()获取原始记忆结果
- 将MemoryAnswer.Result作为变量传入语义函数
- 通过Kernel.InvokeAsync()执行语义处理
- 手动组合处理结果和来源信息
这种方案虽然可行,但破坏了插件模式的封装性,增加了代码复杂度。
技术实现细节
要实现完整的带参考文献问答功能,开发者需要理解以下几个关键点:
- 记忆查询层:Kernel Memory的AskAsync方法会返回包含Result和RelevantSources的完整MemoryAnswer对象
- 语义处理层:Semantic Kernel负责对原始结果进行二次加工和格式化
- 结果整合层:需要设计自定义数据结构来合并处理后的文本和来源信息
优化建议
对于希望保持插件模式简洁性的开发者,可以考虑以下改进方向:
- 扩展插件功能,使其能够透传来源信息
- 开发自定义Middleware来处理结果合并
- 设计新的Prompt模板语法来支持来源标注
最佳实践
在实际项目中实现该功能时,建议:
- 封装专用服务类统一处理问答流程
- 设计清晰的DTO对象来传递完整结果
- 在前端展示层做好来源信息的可视化呈现
总结
虽然当前Kernel Memory的插件模式在参考文献处理上存在局限,但通过合理的架构设计和技术变通,开发者完全可以构建出媲美商业服务的智能问答系统。理解各组件间的数据流动是解决此类问题的关键。
随着开源生态的完善,预计未来版本会提供更优雅的内置解决方案。在此之前,本文介绍的方法已经可以在生产环境中提供可靠的实现。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
405
3.14 K
Ascend Extension for PyTorch
Python
226
251
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
657
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868