Kernel Memory项目中实现带参考文献的智能问答方案解析
2025-07-07 04:06:35作者:魏侃纯Zoe
在基于大语言模型(LLM)的智能问答系统开发过程中,如何让系统在提供答案的同时给出准确的参考文献来源是一个常见需求。本文将以microsoft/kernel-memory项目为例,深入探讨这一技术难题的解决方案。
核心问题分析
在Azure OpenAI等商业服务中,"使用自有数据"功能可以自动在答案后附加参考文献。但在开源框架如Kernel Memory中,当通过Semantic Kernel插件进行问答时,系统默认不会保留相关来源信息。这主要是因为插件调用方式会丢失MemoryAnswer对象中的RelevantSources属性。
现有解决方案评估
目前社区提出的临时解决方案是绕过插件模式,采用分步调用的方式:
- 直接调用IKernelMemory.AskAsync()获取原始记忆结果
- 将MemoryAnswer.Result作为变量传入语义函数
- 通过Kernel.InvokeAsync()执行语义处理
- 手动组合处理结果和来源信息
这种方案虽然可行,但破坏了插件模式的封装性,增加了代码复杂度。
技术实现细节
要实现完整的带参考文献问答功能,开发者需要理解以下几个关键点:
- 记忆查询层:Kernel Memory的AskAsync方法会返回包含Result和RelevantSources的完整MemoryAnswer对象
- 语义处理层:Semantic Kernel负责对原始结果进行二次加工和格式化
- 结果整合层:需要设计自定义数据结构来合并处理后的文本和来源信息
优化建议
对于希望保持插件模式简洁性的开发者,可以考虑以下改进方向:
- 扩展插件功能,使其能够透传来源信息
- 开发自定义Middleware来处理结果合并
- 设计新的Prompt模板语法来支持来源标注
最佳实践
在实际项目中实现该功能时,建议:
- 封装专用服务类统一处理问答流程
- 设计清晰的DTO对象来传递完整结果
- 在前端展示层做好来源信息的可视化呈现
总结
虽然当前Kernel Memory的插件模式在参考文献处理上存在局限,但通过合理的架构设计和技术变通,开发者完全可以构建出媲美商业服务的智能问答系统。理解各组件间的数据流动是解决此类问题的关键。
随着开源生态的完善,预计未来版本会提供更优雅的内置解决方案。在此之前,本文介绍的方法已经可以在生产环境中提供可靠的实现。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210