多任务自监督对象检测:利用边界框注释的循环(MTL-SSL)
2024-09-24 09:35:35作者:董灵辛Dennis
项目介绍
本项目实现了一种新颖的对象检测方法,结合了多任务学习(MTL)与自监督学习(SSL)的优势。作者提出,在有限的标注数据下,通过重用边界框注释,可以提升目标检测的准确性。该方案设计了一系列辅助任务,这些任务在自监督框架中利用主要任务(即对象检测)产生的边界框注释来自动生成标签,并且采用多任务学习的方式与主任务共同训练。这种方法已被提交至CVPR 2019。
项目快速启动
安装依赖
首先,确保你的环境中已经安装了Python以及必要的库。可以通过运行以下命令来安装项目所需的依赖:
pip install -r requirements.txt
运行示例
项目提供了基本的运行脚本,确保你已克隆仓库到本地:
git clone https://github.com/wonheeML/mtl-ssl.git
cd mtl-ssl
# 配置好相关路径和参数后,运行main.py
python setup.py
python main.py --config config_example.yaml
请注意,你需要根据你的实际环境调整配置文件config_example.yaml中的路径和特定设置。
应用案例与最佳实践
应用本项目时,重点在于选择适合的辅助任务和正确配置模型与数据集。例如,利用项目中的指导,你可以创建一个流程,它先通过预训练利用边界框注释的辅助任务增强特征表示,然后在目标检测任务上进行微调。最佳实践中,应当对不同CNN骨干网络(如ResNet-101、InceptionResNet-v2或MobileNet)的性能进行评估,并选择最适合特定应用场景的架构。
典型生态项目
虽然此项目本身构成一个独立的研究贡献,其理念和方法可广泛应用于计算机视觉领域的其他自监督和多任务学习场景。比如,将类似策略扩展至语义分割、人体解析等任务,或者探索如何在不同的数据集(如LVIS、ADE20K)上应用这种基于边界盒回收的方法,以进一步促进模型泛化能力和效率。
以上是关于MTL-SSL项目的简要教程和概述,为了深入理解和应用该项目,建议详细阅读项目提供的论文和文档,特别是在开始定制实验之前。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
425
3.26 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
334
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
231
264
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
19
30