UP-DETR: 无监督预训练的对象检测器
1. 项目介绍
UP-DETR 是一个基于Transformer的物体检测框架,实现了无监督预训练的方法。该方法通过引入“随机查询补丁检测”这一新颖的预训练策略,无需人工标注即可对变换器进行预训练,进而提升对象检测性能。此项目在DETR的基础上进行了扩展,保留了其ResNet-50骨干网络、Transformer编码器与解码器,并且在ImageNet上采用SwAV预训练的CNN权重进行初始化,但整个预训练过程无需任何标签数据。在COCO数据集上,经过300个周期的微调后,UP-DETR达到了43.1AP(甚至更高)的优异成绩。
2. 项目快速启动
环境配置
首先,确保已安装必要的依赖项,推荐使用conda进行环境管理。以下是一系列步骤来设置环境:
conda create -n up-detr-env python=3.8
conda activate up-detr-env
conda install -c pytorch pytorch torchvision
conda install cython scipy
pip install -U 'git+https://github.com/cocodataset/cocoapi#subdirectory=PythonAPI'
然后,克隆项目仓库并准备开始:
git clone https://github.com/dddzg/up-detr.git
cd up-detr
数据准备
对于无监督预训练,您需要下载ILSVRC2012的数据集并正确组织目录结构。
预训练
在单节点8张GPU上运行60个周期的预训练示例命令:
python -m torch.distributed.launch --nproc_per_node=8 --use_env main.py \
--lr_drop 40 \
--epochs 60 \
--pre_norm \
--num_patches 10 \
--batch_size 32 \
--feature_recon \
--fre_cnn \
--imagenet_path /path/to/imagenet \
--output_dir /path/to/save_model
微调
以COCO数据集为例进行模型微调:
python -m torch.distributed.launch --nproc_per_node=8 --use_env detr_main.py \
--lr_drop 200 \
--epochs 300 \
--lr_backbone 5e-5 \
--pre_norm \
--coco_path /path/to/coco \
--pretrain /path/to/save_model/checkpoint.pth
3. 应用案例和最佳实践
UP-DETR不仅适用于标准的目标检测任务,还能够作为基础模型扩展到全景分割等领域。最佳实践中,强调了预训练阶段的大批量尺寸选择以及去除对象查询洗牌的策略,这些调整有助于提高训练效率和最终性能。用户可以通过调整参数如--num_patches和--feature_recon来优化模型的学习特性。
4. 典型生态项目
虽然本项目集中于UP-DETR本身,但它间接促进了视觉领域中利用Transformer进行无监督学习的研究发展。研究者可以借鉴UP-DETR的思路,在其他计算机视觉任务中探索类似无监督或自监督的预训练技术,增强模型的泛化能力和初始学习效率。此外,结合COCO这样的基准数据集和现有的深度学习生态系统,开发者可以创建更多的工具包和库,以支持更广泛的应用场景。
以上便是UP-DETR项目的基本使用指南和概览,为研究人员和开发者提供了强大的工具来探索无监督物体检测的新边界。记得详细阅读项目的官方文档和论文,以获取更深入的理解和实践指导。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00