React Native Testing Library 中 Unexpected token 'export' 错误分析与解决方案
问题背景
在使用 React Native Testing Library 进行组件测试时,开发者可能会遇到 "Unexpected token 'export'" 的错误提示。这个问题通常出现在升级 React Native 版本后,特别是在从 0.72.x 升级到 0.73.x 版本时较为常见。
错误表现
当运行测试用例时,控制台会显示类似以下错误信息:
Trying to detect host component names triggered the following error:
Unexpected token 'export'
错误通常指向测试文件中的 render() 方法调用处,表明测试框架在解析组件时遇到了意外的 ES6 export 语法。
根本原因
经过分析,这个问题主要与 Babel 配置有关。在 React Native 0.73.x 版本中,Babel 的默认配置发生了变化,而许多开发者会按照旧版本的配置方式或者某些教程添加不必要的 preset,导致测试环境无法正确解析模块。
解决方案
1. 检查并简化 Babel 配置
正确的 babel.config.js 应该保持简洁:
module.exports = {
presets: ['module:@react-native/babel-preset']
};
许多开发者错误地添加了以下配置,这些在 React Native 0.73.x 中通常是不必要的:
// 以下配置可能导致问题,建议移除
['@babel/preset-env', { targets: { node: 'current' } }]
'@babel/preset-typescript'
2. 特定场景下的解决方案
对于使用 Expo 的项目,配置应简化为:
module.exports = function (api) {
api.cache(true);
return {
presets: ['babel-preset-expo']
};
};
3. 插件处理
如果项目中使用了 react-native-reanimated 等插件,确保它们被正确配置:
module.exports = {
presets: ['module:@react-native/babel-preset'],
plugins: ['react-native-reanimated/plugin']
};
进阶建议
-
版本兼容性检查:确保 React Native Testing Library 的版本与 React Native 版本兼容
-
新建项目对比:当遇到配置问题时,可以创建一个全新的 React Native 项目,对比其默认配置与现有项目的差异
-
逐步排查:如果简化配置后出现其他问题(如某些依赖无法正确转换),应该逐个添加必要的 preset 和 plugin,而不是一次性恢复所有配置
总结
"Unexpected token 'export'" 错误通常是由于 Babel 配置不当导致的。在 React Native 0.73.x 版本中,Babel 的默认配置已经足够处理大多数场景,过度配置反而会导致问题。开发者应该遵循"最小配置"原则,只在确实需要时才添加额外的 preset 或 plugin。
通过合理简化 Babel 配置,大多数情况下可以解决这个测试错误,同时保持项目的其他功能正常运作。如果问题仍然存在,建议检查项目依赖版本是否兼容,或者创建一个最小复现案例以便进一步分析。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00