React Native Testing Library 中 Unexpected token 'export' 错误分析与解决方案
问题背景
在使用 React Native Testing Library 进行组件测试时,开发者可能会遇到 "Unexpected token 'export'" 的错误提示。这个问题通常出现在升级 React Native 版本后,特别是在从 0.72.x 升级到 0.73.x 版本时较为常见。
错误表现
当运行测试用例时,控制台会显示类似以下错误信息:
Trying to detect host component names triggered the following error:
Unexpected token 'export'
错误通常指向测试文件中的 render() 方法调用处,表明测试框架在解析组件时遇到了意外的 ES6 export 语法。
根本原因
经过分析,这个问题主要与 Babel 配置有关。在 React Native 0.73.x 版本中,Babel 的默认配置发生了变化,而许多开发者会按照旧版本的配置方式或者某些教程添加不必要的 preset,导致测试环境无法正确解析模块。
解决方案
1. 检查并简化 Babel 配置
正确的 babel.config.js 应该保持简洁:
module.exports = {
presets: ['module:@react-native/babel-preset']
};
许多开发者错误地添加了以下配置,这些在 React Native 0.73.x 中通常是不必要的:
// 以下配置可能导致问题,建议移除
['@babel/preset-env', { targets: { node: 'current' } }]
'@babel/preset-typescript'
2. 特定场景下的解决方案
对于使用 Expo 的项目,配置应简化为:
module.exports = function (api) {
api.cache(true);
return {
presets: ['babel-preset-expo']
};
};
3. 插件处理
如果项目中使用了 react-native-reanimated 等插件,确保它们被正确配置:
module.exports = {
presets: ['module:@react-native/babel-preset'],
plugins: ['react-native-reanimated/plugin']
};
进阶建议
-
版本兼容性检查:确保 React Native Testing Library 的版本与 React Native 版本兼容
-
新建项目对比:当遇到配置问题时,可以创建一个全新的 React Native 项目,对比其默认配置与现有项目的差异
-
逐步排查:如果简化配置后出现其他问题(如某些依赖无法正确转换),应该逐个添加必要的 preset 和 plugin,而不是一次性恢复所有配置
总结
"Unexpected token 'export'" 错误通常是由于 Babel 配置不当导致的。在 React Native 0.73.x 版本中,Babel 的默认配置已经足够处理大多数场景,过度配置反而会导致问题。开发者应该遵循"最小配置"原则,只在确实需要时才添加额外的 preset 或 plugin。
通过合理简化 Babel 配置,大多数情况下可以解决这个测试错误,同时保持项目的其他功能正常运作。如果问题仍然存在,建议检查项目依赖版本是否兼容,或者创建一个最小复现案例以便进一步分析。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00