Stacks-core项目中多矿工空排序测试问题分析
问题背景
在stacks-core项目的测试过程中,发现了一个关于多矿工空排序(v0)的测试用例存在不稳定性问题。该测试主要验证在Nakamoto共识机制下,多个矿工节点在遇到空排序(empty sortition)情况时的行为表现。
问题现象
测试失败时主要表现出两种不同的症状:
-
矿工无法延续运行周期:两个矿工节点都表示不会延长它们的运行周期,因为未能赢得最新的排序。日志显示一个矿工节点虽然赢得了排序(b6f053c9e6d02533582c288890da9a1f3ed17ddf),但最高有效排序却是另一个(2675cd0f6486580ff3870e7ef4c213ac22a3dee4)。
-
断言失败:测试期望
cur_empty_sortition.was_sortition为false,但实际为true,导致断言失败。
根本原因分析
经过深入调查,发现这个问题有两个潜在的根本原因:
-
区块处理时机问题:测试在查询最新排序时,错误地认为最后一个区块已经被处理,但实际上尚未完成处理。这导致测试逻辑与实际情况不同步。
-
奖励周期边界问题:当"闪存区块"(flash block)跨越奖励周期边界时,矿工无法从一个奖励周期延续到下一个奖励周期,导致运行周期无法延长。
解决方案
针对上述问题,开发团队实施了以下修复措施:
-
增加区块高度检查:在等待区块被处理的逻辑中,不仅检查提交计数,还增加了对区块高度的验证,确保目标区块确实已被处理。
-
调整测试逻辑:优化了测试用例中对空排序状态的判断逻辑,使其更加健壮,能够正确处理跨越奖励周期边界的情况。
技术细节
在Nakamoto共识机制中,矿工节点的运行周期延续依赖于赢得排序。当出现空排序时,系统需要特殊处理。测试用例模拟了这种情况,验证矿工节点能否正确处理。
修复后的代码主要修改了等待区块处理的逻辑,增加了对区块高度的检查,确保测试逻辑与实际链状态同步。这种修改提高了测试的可靠性,避免了因处理时机问题导致的假阳性失败。
结论
通过这次问题的分析和修复,不仅解决了特定的测试不稳定问题,还加深了对Stacks区块链共识机制中矿工节点行为,特别是在空排序和奖励周期边界情况下处理逻辑的理解。这类问题的解决有助于提高整个系统的稳定性和可靠性。
对于区块链系统开发者而言,这类测试问题的排查也提供了宝贵经验:在处理链状态相关的测试时,必须确保测试逻辑与实际链处理进度严格同步,特别是在涉及多个区块和共识机制边界条件的情况下。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C093
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00