wkhtmltopdf-binary 项目技术文档
1. 安装指南
1.1 在 Gemfile 中安装
在项目的 Gemfile 中添加以下内容:
gem 'wkhtmltopdf-binary'
然后运行 bundle install 命令来安装 gem。
1.2 权限设置
在某些环境中,运行 wkhtmltopdf-binary 可能会出现权限错误。这是因为该 gem 包含了多个平台的压缩二进制文件,并在首次使用时解压缩到指定目录。如果 Ruby gem 的二进制文件安装在以下目录:
/usr/lib/ruby/versions/2.6/bin/
那么 wkhtmltopdf-binary 的二进制文件将被安装在:
/usr/lib/ruby/versions/2.6/lib/ruby/gems/2.6.0/gems/wkhtmltopdf-binary-0.12.5.1/bin/
为了解决权限问题,需要为运行程序的用户(例如 Web 服务器或后台任务处理器)授予写权限。例如,在开发环境中,可以为个人用户授予写权限:
chmod -R 777 /usr/lib/ruby/versions/2.6/lib/ruby/gems/2.6.0/gems/wkhtmltopdf-binary-0.12.5.1/bin/
解压缩后,如果需要,可以撤销写权限。
2. 项目的使用说明
2.1 基本使用
在大多数环境中,安装 wkhtmltopdf-binary 后,您可以直接使用 wkhtmltopdf 命令生成 PDF 文件。该 gem 会自动检测系统环境并选择合适的二进制文件。
2.2 自定义二进制文件
如果您需要使用特定版本的 wkhtmltopdf 二进制文件,可以通过以下步骤手动提取和压缩二进制文件:
2.2.1 提取二进制文件
根据您的操作系统,使用以下命令提取二进制文件:
-
Debian/Ubuntu:
dpkg -x wkhtmltox_0.12.5-1.trusty_amd64.deb . -
CentOS:
rpm2cpio wkhtmltox-0.12.5-1.centos7.x86_64.rpm | cpio -idmv -
Archlinux/Manjaro:
tar -xf wkhtmltox-0.12.6-1.archlinux.x86_64.tar.xz -
macOS:
xar -xf wkhtmltox-0.12.5-1.macos-cocoa.pkg cat Payload | gunzip -dc | cpio -i
2.2.2 压缩二进制文件
提取二进制文件后,使用 gzip --best 命令进行压缩:
-
Debian/Ubuntu:
gzip --best -c usr/local/bin/wkhtmltopdf > wkhtmltopdf_ubuntu_22.04.amd64.gz
3. 项目API使用文档
wkhtmltopdf-binary 主要通过命令行工具 wkhtmltopdf 来生成 PDF 文件。以下是一些常用的命令行参数:
-
生成 PDF 文件:
wkhtmltopdf input.html output.pdf -
设置页面大小:
wkhtmltopdf --page-size A4 input.html output.pdf -
设置页边距:
wkhtmltopdf --margin-top 10 --margin-bottom 10 --margin-left 10 --margin-right 10 input.html output.pdf -
使用 JavaScript 延迟:
wkhtmltopdf --javascript-delay 200 input.html output.pdf
4. 项目安装方式
4.1 通过 Gemfile 安装
如前所述,在 Gemfile 中添加 gem 'wkhtmltopdf-binary',然后运行 bundle install 进行安装。
4.2 手动安装
如果您需要手动安装 wkhtmltopdf-binary,可以按照以下步骤操作:
-
克隆项目仓库:
git clone https://github.com/zakird/wkhtmltopdf_binary_gem -
进入项目目录:
cd wkhtmltopdf_binary_gem/ -
安装依赖:
bundle install -
运行测试:
bundle exec rake
通过以上步骤,您可以手动安装并测试 wkhtmltopdf-binary 项目。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00