wkhtmltopdf-binary 项目技术文档
1. 安装指南
1.1 在 Gemfile 中安装
在项目的 Gemfile 中添加以下内容:
gem 'wkhtmltopdf-binary'
然后运行 bundle install 命令来安装 gem。
1.2 权限设置
在某些环境中,运行 wkhtmltopdf-binary 可能会出现权限错误。这是因为该 gem 包含了多个平台的压缩二进制文件,并在首次使用时解压缩到指定目录。如果 Ruby gem 的二进制文件安装在以下目录:
/usr/lib/ruby/versions/2.6/bin/
那么 wkhtmltopdf-binary 的二进制文件将被安装在:
/usr/lib/ruby/versions/2.6/lib/ruby/gems/2.6.0/gems/wkhtmltopdf-binary-0.12.5.1/bin/
为了解决权限问题,需要为运行程序的用户(例如 Web 服务器或后台任务处理器)授予写权限。例如,在开发环境中,可以为个人用户授予写权限:
chmod -R 777 /usr/lib/ruby/versions/2.6/lib/ruby/gems/2.6.0/gems/wkhtmltopdf-binary-0.12.5.1/bin/
解压缩后,如果需要,可以撤销写权限。
2. 项目的使用说明
2.1 基本使用
在大多数环境中,安装 wkhtmltopdf-binary 后,您可以直接使用 wkhtmltopdf 命令生成 PDF 文件。该 gem 会自动检测系统环境并选择合适的二进制文件。
2.2 自定义二进制文件
如果您需要使用特定版本的 wkhtmltopdf 二进制文件,可以通过以下步骤手动提取和压缩二进制文件:
2.2.1 提取二进制文件
根据您的操作系统,使用以下命令提取二进制文件:
-
Debian/Ubuntu:
dpkg -x wkhtmltox_0.12.5-1.trusty_amd64.deb . -
CentOS:
rpm2cpio wkhtmltox-0.12.5-1.centos7.x86_64.rpm | cpio -idmv -
Archlinux/Manjaro:
tar -xf wkhtmltox-0.12.6-1.archlinux.x86_64.tar.xz -
macOS:
xar -xf wkhtmltox-0.12.5-1.macos-cocoa.pkg cat Payload | gunzip -dc | cpio -i
2.2.2 压缩二进制文件
提取二进制文件后,使用 gzip --best 命令进行压缩:
-
Debian/Ubuntu:
gzip --best -c usr/local/bin/wkhtmltopdf > wkhtmltopdf_ubuntu_22.04.amd64.gz
3. 项目API使用文档
wkhtmltopdf-binary 主要通过命令行工具 wkhtmltopdf 来生成 PDF 文件。以下是一些常用的命令行参数:
-
生成 PDF 文件:
wkhtmltopdf input.html output.pdf -
设置页面大小:
wkhtmltopdf --page-size A4 input.html output.pdf -
设置页边距:
wkhtmltopdf --margin-top 10 --margin-bottom 10 --margin-left 10 --margin-right 10 input.html output.pdf -
使用 JavaScript 延迟:
wkhtmltopdf --javascript-delay 200 input.html output.pdf
4. 项目安装方式
4.1 通过 Gemfile 安装
如前所述,在 Gemfile 中添加 gem 'wkhtmltopdf-binary',然后运行 bundle install 进行安装。
4.2 手动安装
如果您需要手动安装 wkhtmltopdf-binary,可以按照以下步骤操作:
-
克隆项目仓库:
git clone https://github.com/zakird/wkhtmltopdf_binary_gem -
进入项目目录:
cd wkhtmltopdf_binary_gem/ -
安装依赖:
bundle install -
运行测试:
bundle exec rake
通过以上步骤,您可以手动安装并测试 wkhtmltopdf-binary 项目。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00