探索Ganitha:开源机器学习与统计分析库
2024-08-28 00:50:16作者:魏侃纯Zoe
项目介绍
Tresata自豪地发布了其首个开源库——Ganitha。Ganitha源自梵语,意为数学或计算科学,是一个基于Scalding的库,专注于机器学习和统计分析。目前,Ganitha开源的部分包括Mahout向量与Scalding的集成、K-Means聚类实现以及朴素贝叶斯分类器。
项目技术分析
Ganitha-Mahout
Ganitha通过Scala的“pimp-my-library”模式,增强了Mahout向量的可用性,使其更友好。例如,通过RichVector,用户可以轻松创建和操作稀疏和密集向量,进行基本的数学和向量运算。此外,Ganitha还通过Kryo序列化器VectorSerializer,使Mahout向量的序列化变得透明,简化了在Scalding中的使用。
朴素贝叶斯分类器
Ganitha提供了三种流行的朴素贝叶斯分类器:高斯、多项式和伯努利。这些分类器在训练阶段构建NBModel,在分类阶段为每个数据点分配概率,并选择具有最高后验概率的标签。
K-Means聚类
Ganitha的K-Means聚类实现支持多种数据点表示,包括Mahout向量。它从Cascading序列文件读取向量,并通过Lloyd算法优化聚类中心。Ganitha还支持K-Means++和K-Means||等初始化技术,以提高收敛速度。
项目及技术应用场景
Ganitha适用于需要进行大规模数据分析和机器学习的场景。例如,在文本分析、图像识别、推荐系统等领域,Ganitha的朴素贝叶斯分类器和K-Means聚类可以提供强大的支持。此外,Ganitha的Mahout向量集成使其在处理复杂数据结构时更加灵活和高效。
项目特点
- 增强的Mahout向量操作:通过
RichVector,Ganitha提供了丰富的向量操作功能,简化了Mahout向量的使用。 - 透明的序列化:
VectorSerializer使Mahout向量的序列化变得透明,方便在Scalding中使用。 - 多样化的分类器:Ganitha提供了高斯、多项式和伯努利三种朴素贝叶斯分类器,适用于不同的数据类型和场景。
- 高效的聚类算法:K-Means聚类支持多种初始化技术,提高了算法的收敛速度和效率。
- 易于集成和使用:Ganitha使用sbt进行构建,提供了详细的文档和示例,方便用户快速上手。
Ganitha不仅提供了强大的机器学习和统计分析功能,还通过其灵活的设计和易于集成的特点,使其成为处理大规模数据集的理想选择。无论是数据科学家还是开发者,Ganitha都值得一试。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134