推荐ODIN:深度学习中的异常检测利器
2024-05-29 22:32:44作者:史锋燃Gardner
在机器学习和深度神经网络的领域中,异常检测是至关重要的一步,它能帮助我们识别并处理不寻常的数据样本,防止模型产生错误预测。今天,我向大家推荐一款强大的开源工具——ODIN(Out-of-Distribution Detector for Neural Networks)。这个基于PyTorch的实现,专注于检测神经网络中的异常样本,显著降低了误报率。
项目介绍
ODIN是由S. Liang、Yixuan Li和R. Srikant提出的,并在论文《Principled Detection of Out-of-Distribution Examples in Neural Networks》中详细描述。它的主要目标是在保持高真正例率的同时,大幅度减少假正例率。通过引入温度调整和微小的输入扰动,ODIN能够提升模型对异常样本的敏感性。
项目技术分析
ODIN的核心在于两个策略:一是通过增加温度参数调整Softmax的概率分布,使得模型对未知类别的响应更加保守;二是添加随机噪声到输入数据,以增强模型的鲁棒性。实验结果显示,在DenseNet应用于CIFAR-10时,当真正例率为95%时,误报率从34.7%降低到了4.3%。
应用场景
ODIN适用于任何需要识别异常或外源数据的应用,例如:
- 图像分类:确保模型只对训练类别进行预测,避免对未知类别的误判。
- 自动驾驶:检测并避开未见过的道路条件,提高安全性。
- 医疗诊断:防止模型将罕见疾病识别为常见病况。
项目特点
- 高效实现:ODIN基于PyTorch构建,代码简洁易懂,易于集成到现有项目中。
- 强大性能:在DenseNet和Wide ResNet等模型上表现出色,显著减少假警报。
- 多样化的应用支持:包括多种预训练模型和广泛的异常检测数据集。
- 可调参数:提供了温度和噪声幅度的调整,适应不同的应用场景需求。
为了验证效果,项目还提供了一系列预训练模型以及实验所需的数据集。只需简单几步,你就可以在自己的环境中运行代码,评估ODIN的效果。
总体而言,ODIN是一个强大的工具,它提升了模型对抗异常样本的能力,对于提高系统稳定性与安全性大有裨益。如果你正在寻找这样的解决方案,那么ODIN绝对是值得一试的选择。立即下载并体验它的威力吧!
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~054CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0378- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
179
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
871
515

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
184

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
345
378

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
333
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
30
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0

deepin linux kernel
C
22
5

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
829
22

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
601
58