推荐ODIN:深度学习中的异常检测利器
2024-05-29 22:32:44作者:史锋燃Gardner
在机器学习和深度神经网络的领域中,异常检测是至关重要的一步,它能帮助我们识别并处理不寻常的数据样本,防止模型产生错误预测。今天,我向大家推荐一款强大的开源工具——ODIN(Out-of-Distribution Detector for Neural Networks)。这个基于PyTorch的实现,专注于检测神经网络中的异常样本,显著降低了误报率。
项目介绍
ODIN是由S. Liang、Yixuan Li和R. Srikant提出的,并在论文《Principled Detection of Out-of-Distribution Examples in Neural Networks》中详细描述。它的主要目标是在保持高真正例率的同时,大幅度减少假正例率。通过引入温度调整和微小的输入扰动,ODIN能够提升模型对异常样本的敏感性。
项目技术分析
ODIN的核心在于两个策略:一是通过增加温度参数调整Softmax的概率分布,使得模型对未知类别的响应更加保守;二是添加随机噪声到输入数据,以增强模型的鲁棒性。实验结果显示,在DenseNet应用于CIFAR-10时,当真正例率为95%时,误报率从34.7%降低到了4.3%。
应用场景
ODIN适用于任何需要识别异常或外源数据的应用,例如:
- 图像分类:确保模型只对训练类别进行预测,避免对未知类别的误判。
- 自动驾驶:检测并避开未见过的道路条件,提高安全性。
- 医疗诊断:防止模型将罕见疾病识别为常见病况。
项目特点
- 高效实现:ODIN基于PyTorch构建,代码简洁易懂,易于集成到现有项目中。
- 强大性能:在DenseNet和Wide ResNet等模型上表现出色,显著减少假警报。
- 多样化的应用支持:包括多种预训练模型和广泛的异常检测数据集。
- 可调参数:提供了温度和噪声幅度的调整,适应不同的应用场景需求。
为了验证效果,项目还提供了一系列预训练模型以及实验所需的数据集。只需简单几步,你就可以在自己的环境中运行代码,评估ODIN的效果。
总体而言,ODIN是一个强大的工具,它提升了模型对抗异常样本的能力,对于提高系统稳定性与安全性大有裨益。如果你正在寻找这样的解决方案,那么ODIN绝对是值得一试的选择。立即下载并体验它的威力吧!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C036
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
344
Ascend Extension for PyTorch
Python
235
268
暂无简介
Dart
686
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
62
33
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669