推荐开源项目:Correct and Smooth (C&S)
在这个快速发展的数据科学和机器学习领域,我们经常面临如何优化图神经网络(GNN)性能的挑战。Correct and Smooth (C&S) 是一个创新的开源项目,源自一项研究论文《Correct and Smooth: Simple Baselines for Open Graph Challenges》(https://arxiv.org/abs/2010.13993),旨在通过两种策略——“Correct” 和 “Smooth”,提升图神经网络模型在图数据上的表现。
项目介绍
C&S 提供了一套用于 OGB 挑战赛的提交代码,包括各种基于图的数据集上的实验设置,如 Arxiv 和 Products 数据集。这个项目不仅实现了多种基础模型(如线性模型、多层感知器、GAT),还提供了一种后处理方法,即通过对预测结果应用“Correct”和“Smooth”的技巧来改善模型的准确度。
项目技术分析
C&S 的核心在于它的一对策略:
- Correct:利用额外的标签信息,对模型的预测进行校正,尤其适用于线性或简单模型。
- Smooth:引入平滑成分,增强模型对邻居信息的整合,有助于复杂模型的性能提升。
这些策略无需调整任何原始模型的参数,而是作为一个独立的后期处理步骤,可与任意预训练模型结合使用。
项目及技术应用场景
C&S 可广泛应用于图数据分析的各种场景,例如社交网络分析、化学分子结构解析、推荐系统等。在 OGB 的 Arxiv 和 Products 数据集上,该项目展示了其提高模型准确性的潜力,无论对于简单的线性模型还是复杂的 GAT 模型,都取得了显著效果。
项目特点
- 兼容性:C&S 能够无缝集成到任何现有 GNN 模型中,不论模型的复杂程度。
- 无需新参数:“Correct & Smooth”过程不学习新的参数,仅依赖于预训练模型的输出。
- 性能提升:即使某些模型已经在验证集上有良好表现,C&S 仍然能够进一步优化测试集的准确性。
- 灵活应用:“Correct”和“Smooth”可以单独使用,也可组合使用,为调优提供了更多可能性。
为了更好地理解和应用 C&S,项目提供了详细的手动和自动超参数调优示例,以及在 Arxiv 和 Products 数据集上的实验结果,便于开发者复现和扩展。
总的来说,Correct and Smooth 是一个强大且实用的工具,可以帮助您提升图神经网络在实际任务中的性能。如果您正在寻找一种优化策略,以挖掘您的图数据模型的潜力,那么这个项目绝对值得尝试。立即加入,体验 C&S 带来的性能飞跃吧!
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









