人机交互填充评估基准:human-eval-infilling 使用指南
项目介绍
human-eval-infilling 是一个由OpenAI发布的评估工具包,专门用于评测代码生成模型在“填空式”编程任务上的表现。这个项目基于《FIM》论文中的描述,构建了一系列的人机交互式的评价基准,旨在检验模型在Python代码补全任务上的能力。它涵盖了多种场景,特别是在多行和单行补全上,提供了丰富的测试案例,以评估模型理解并完成中间代码段的能力。
项目快速启动
环境准备
首先,确保你的开发环境已安装Python 3.7或更高版本。你可以通过以下命令创建一个新的Conda环境:
conda create -n codex python=3.7
conda activate codex
接下来,克隆项目仓库并安装必要的依赖:
git clone https://github.com/openai/human-eval-infilling.git
pip install -e human-eval-infilling
运行示例
一旦环境配置完毕,你即可尝试运行项目中提供的测试案例来体验如何使用此框架。虽然具体示例代码需依据实际项目文件结构和说明进行,一般流程包括导入必要的模块,定义或调用评估函数。但请注意,下面的代码片段是概念性的,并非直接从引用内容复制:
from human_eval_infilling import evaluate_code_generation_model
# 假设有一个模型的候选代码生成函数为your_model_generate_code
def your_model_generate_code(prompt):
# 实现你的模型代码生成逻辑
pass
# 使用项目提供的测试集来评估你的模型
results = evaluate_code_generation_model(your_model_generate_code)
print(results)
应用案例和最佳实践
在这个环节,开发者可以探索将human-eval-infilling应用于不同的场景,比如作为模型训练的数据增强工具,或者在教育领域中评估学生代码自动补全的准确性。最佳实践包括深入分析模型的失败案例,优化算法对特定类型问题的理解力,以及持续迭代提高模型的代码生成质量。
典型生态项目
虽然具体的典型生态项目并未直接在引用内容中列出,human-eval-infilling这样的工具通常与其他语言模型、代码审核系统、自动编码助手紧密相关。例如,它可以集成到GitHub Actions中,作为自动化代码审查的一部分,或者与CoPilot之类的AI辅助编程工具结合,提升其代码建议的质量和准确性。
通过遵循上述步骤,开发者能够有效地利用human-eval-infilling来评估和提升他们的代码生成模型,同时促进代码质量和可维护性的发展。记住,成功的应用不仅在于技术实现,更在于不断地实验、学习和改进。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0372Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0104AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









