Apache Spark Kubernetes 操作器安装与使用教程
本教程将引导您了解如何安装并使用 Apache Spark Kubernetes Operator。该操作器使得在 Kubernetes 上管理和运行 Spark 应用程序变得更加简单和直观。
1. 项目目录结构及介绍
在 Apache Spark Kubernetes Operator 的源代码仓库中,目录结构主要包括以下部分:
- README.md: 项目的基本介绍和指南。
- CODE_OF_CONDUCT.md: 社区行为准则。
- LICENSE: 开源许可证(Apache 2.0)。
- docs/: 相关文档和说明文件。
- charts/: Helm 图表,用于部署操作器。
- pkg/: 包含操作器的核心实现,如 Kubernetes 的 CRD 定义和控制器逻辑。
- examples/: 示例应用程序和配置文件,帮助理解如何使用操作器提交 Spark 任务。
- scripts/: 脚本文件,可能包括构建和测试脚本。
2. 项目的启动文件介绍
主要的启动文件是位于 charts/spark-operator/ 目录下的 Chart.yaml 和 values.yaml 文件。
Chart.yaml
这是 Helm 图表的元数据文件,定义了图表的名称、版本、依赖等信息。当您要安装操作器时,Helm 将读取此文件以了解如何部署。
values.yaml
这个文件包含了默认配置参数,可以自定义以满足特定环境的需求。例如,您可以在这里设置 Spark 运行器的副本数、资源限制以及其他相关设置。
启动操作器通常通过以下命令执行:
helm install spark-operator charts/spark-operator --set sparkJobNamespace=default
这里的 --set 参数用于覆盖 values.yaml 中的默认值。
3. 项目的配置文件介绍
Apache Spark Kubernetes Operator 使用 Kubernetes 的 Custom Resource Definitions (CRDs) 来定义和管理 Spark 应用。主要的 CRDs 包括 SparkApplication,它允许您以 YAML 形式描述一个 Spark 应用,并指定其配置。
下面是一个简单的 SparkApplication 示例:
apiVersion: "sparkoperator.k8s.io/v1beta2"
kind: SparkApplication
metadata:
name: spark-pi
spec:
type: Scala
mode: cluster
image: "spark:2.4.5-k8s-2.4"
imagePullPolicy: Always
mainClass: org.apache.spark.examples.SparkPi
mainAppResource:
file: local:///usr/lib/spark/examples/jars/spark-examples_2.11-2.4.5.jar
kind: Jar
args:
- "100"
sparkConf:
"spark.executor.instances": "2"
deployMode: "cluster"
serviceAccount: spark
volumes:
- name: shared-volume
emptyDir: {}
driver:
cores: 1
coreLimit: "120m"
memory: "512m"
labels:
example: "spark-pi-driver"
serviceAccount: spark
volumeMounts:
- mountPath: /data
name: shared-volume
executor:
cores: 1
instances: 2
memory: "512m"
labels:
example: "spark-pi-executor"
volumeMounts:
- mountPath: /data
name: shared-volume
在这个示例中,我们配置了一个计算圆周率的 Spark 应用,指定了使用的 Spark 镜像、主类、参数以及驱动程序和执行器的资源需求。
在准备好 SparkApplication 的 YAML 文件之后,可以通过 kubectl 命令将其应用到集群上:
kubectl apply -f your_spark_application.yaml
至此,您已大致了解了 Apache Spark Kubernetes Operator 的目录结构、启动文件以及配置文件的使用方法。为了深入实践,建议参考官方文档和示例进行操作。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00