Apache Spark Kubernetes 操作器安装与使用教程
本教程将引导您了解如何安装并使用 Apache Spark Kubernetes Operator。该操作器使得在 Kubernetes 上管理和运行 Spark 应用程序变得更加简单和直观。
1. 项目目录结构及介绍
在 Apache Spark Kubernetes Operator 的源代码仓库中,目录结构主要包括以下部分:
- README.md: 项目的基本介绍和指南。
- CODE_OF_CONDUCT.md: 社区行为准则。
- LICENSE: 开源许可证(Apache 2.0)。
- docs/: 相关文档和说明文件。
- charts/: Helm 图表,用于部署操作器。
- pkg/: 包含操作器的核心实现,如 Kubernetes 的 CRD 定义和控制器逻辑。
- examples/: 示例应用程序和配置文件,帮助理解如何使用操作器提交 Spark 任务。
- scripts/: 脚本文件,可能包括构建和测试脚本。
2. 项目的启动文件介绍
主要的启动文件是位于 charts/spark-operator/ 目录下的 Chart.yaml 和 values.yaml 文件。
Chart.yaml
这是 Helm 图表的元数据文件,定义了图表的名称、版本、依赖等信息。当您要安装操作器时,Helm 将读取此文件以了解如何部署。
values.yaml
这个文件包含了默认配置参数,可以自定义以满足特定环境的需求。例如,您可以在这里设置 Spark 运行器的副本数、资源限制以及其他相关设置。
启动操作器通常通过以下命令执行:
helm install spark-operator charts/spark-operator --set sparkJobNamespace=default
这里的 --set 参数用于覆盖 values.yaml 中的默认值。
3. 项目的配置文件介绍
Apache Spark Kubernetes Operator 使用 Kubernetes 的 Custom Resource Definitions (CRDs) 来定义和管理 Spark 应用。主要的 CRDs 包括 SparkApplication,它允许您以 YAML 形式描述一个 Spark 应用,并指定其配置。
下面是一个简单的 SparkApplication 示例:
apiVersion: "sparkoperator.k8s.io/v1beta2"
kind: SparkApplication
metadata:
name: spark-pi
spec:
type: Scala
mode: cluster
image: "spark:2.4.5-k8s-2.4"
imagePullPolicy: Always
mainClass: org.apache.spark.examples.SparkPi
mainAppResource:
file: local:///usr/lib/spark/examples/jars/spark-examples_2.11-2.4.5.jar
kind: Jar
args:
- "100"
sparkConf:
"spark.executor.instances": "2"
deployMode: "cluster"
serviceAccount: spark
volumes:
- name: shared-volume
emptyDir: {}
driver:
cores: 1
coreLimit: "120m"
memory: "512m"
labels:
example: "spark-pi-driver"
serviceAccount: spark
volumeMounts:
- mountPath: /data
name: shared-volume
executor:
cores: 1
instances: 2
memory: "512m"
labels:
example: "spark-pi-executor"
volumeMounts:
- mountPath: /data
name: shared-volume
在这个示例中,我们配置了一个计算圆周率的 Spark 应用,指定了使用的 Spark 镜像、主类、参数以及驱动程序和执行器的资源需求。
在准备好 SparkApplication 的 YAML 文件之后,可以通过 kubectl 命令将其应用到集群上:
kubectl apply -f your_spark_application.yaml
至此,您已大致了解了 Apache Spark Kubernetes Operator 的目录结构、启动文件以及配置文件的使用方法。为了深入实践,建议参考官方文档和示例进行操作。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00