SimpleTuner项目在Mac M1设备上的训练问题分析与解决方案
背景介绍
SimpleTuner是一个用于训练Stable Diffusion模型的工具集,它支持多种训练配置和优化技术。近期有用户在Mac M1设备上尝试训练SD 3.5 LoRA模型时遇到了技术障碍,具体表现为训练开始时出现torch._dynamo.exc.BackendCompilerFailed错误。
问题分析
在Mac M1设备(配备64GB内存)上运行训练时,系统报错显示LoweringException: TypeError: 'NoneType' object is not callable,错误发生在aten.amax.default操作中。深入分析日志后发现,这与PyTorch的编译后端和硬件支持特性密切相关。
根本原因
经过技术分析,发现这一问题主要由两个关键因素导致:
-
硬件限制:Mac M1芯片缺少对BF16(Brain Floating Point 16)格式的硬件支持,而M2及后续芯片才加入这一功能。虽然软件层面可能模拟BF16运算,但性能和支持程度有限。
-
优化器兼容性:用户尝试使用
ao-adamw8bit优化器,这是TorchAO项目的一部分,但TorchAO相关功能在Mac平台上存在兼容性问题。
解决方案
针对这一问题,我们推荐以下解决方案:
-
更换优化器:使用
optimi-lion优化器替代不兼容的优化器,这是经过验证在Mac M1上可用的替代方案。 -
调整训练配置:
- 将批量大小设置为1
- 使用
int8-quanto作为基础模型精度 - 注意Mac平台不支持FP8精度
-
硬件考量:
- 对于拥有M2或更新芯片的Mac用户,可以尝试启用BF16支持
- M1用户应考虑上述配置调整
实施建议
对于希望在Mac M1上成功运行SimpleTuner的用户,建议按照以下步骤操作:
- 修改训练配置文件,将优化器从
ao-adamw8bit更换为optimi-lion - 确保批量大小设置为1
- 确认基础模型精度设置为
int8-quanto - 避免尝试使用FP8相关功能
总结
Mac M1设备虽然性能强大,但在运行某些深度学习训练任务时仍存在特定限制。通过选择合适的优化器和配置参数,用户仍然可以在这些设备上成功运行SimpleTuner进行模型训练。随着Apple Silicon芯片的迭代更新,未来对这些高级训练功能的支持将会更加完善。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00