Turbo 构建系统指南
1. 项目目录结构及介绍
Turbo 是一个专为JavaScript和TypeScript代码库设计的高性能构建系统,它以Rust语言编写。尽管仓库中没有直接提供详细的目录结构说明,我们可以通过其默认的Git仓库布局来推测典型的项目结构:
Cargo.toml: 这是Rust项目的配置文件,定义了依赖项、版本和其他编译指令。Cargo.lock: 记录了确切的依赖版本,确保构建的一致性。src: 包含主要的Rust源代码。对于Turborepo来说,这可能包括核心逻辑和命令处理部分。docs: 存放项目文档,帮助开发者理解如何使用和贡献于项目。examples: 可能包含示例代码或使用场景,展示如何在实际项目中应用Turborepo。tests: 测试文件,用于验证功能的正确性和稳定性。.gitignore,license,README.md等标准文件分别用于忽略不需要提交的文件、许可证声明以及项目简介。
请注意,具体到应用级项目的目录结构,开发者应该遵循Turborepo的初始化模板或者最佳实践,通常会包括多个子包(如果使用monorepo方式)和对应的tsconfig.json等配置文件,以及特定的构建脚本。
2. 项目的启动文件介绍
在Turborepo这个背景下,“启动文件”更多是指执行构建流程的入口点。虽然不像传统应用程序有一个单一的“main”函数或文件,但在实际应用中,开发者通常通过CLI工具(如 npx turbo 或配置过的脚本)来启动构建、开发服务器等。pnpm-workspace.yaml 或者 turbo.json 可能会被用来配置工作流的起点,定义哪些命令触发何种构建任务。
turbo.json: 控制Turborepo的行为,指定管道(Pipeline)配置,定义了任务如何并行执行,以及共享缓存的规则等。- CLI命令:用户通过诸如
turbo start,turbo build, 或自定义的脚本来启动不同的工作流程。
3. 项目的配置文件介绍
主要配置文件
-
turbo.json: 核心配置文件,位于项目根目录下。它定义了如何运行作业(jobs)、哪些任务可以并行执行、缓存策略以及特定的构建设置。这是调整Turborepo行为的关键所在。 -
pnpm-workspace.yaml: 如果项目使用PNPM作为包管理器,并且采用monorepo模式,这个文件定义了工作空间的配置,包括每个包的路径和它们之间的关系,也可以配置脚本来间接影响启动过程。 -
.npmrc或其他包管理器配置: 控制包下载、缓存等行为,间接影响Turborepo的构建环境。 -
TypeScript配置 (
tsconfig.json): 在应用层级,如果有TypeScript代码,这个文件配置TypeScript编译选项,虽然不属于Turborepo直接管理但对构建至关重要。 -
其他特定工具配置: 如Webpack、Babel或其他构建相关工具的配置文件,虽不直接属于Turborepo,但对整体构建过程有重大影响。
通过上述配置和组件,Turborepo提供了高效的构建解决方案,特别是在大型单仓库或多项目环境中。开发者应根据项目需求细心调整这些配置文件,以达到最佳的构建效率和开发体验。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00