Marten事件溯源中投影重建时的数据一致性挑战
2025-06-26 00:14:07作者:霍妲思
引言
在使用Marten进行事件溯源开发时,投影(Projection)的设计是一个关键环节。本文将通过一个实际案例,探讨在投影重建过程中如何处理未提交事件的数据一致性问题,并提供几种解决方案。
案例背景
假设我们有一个简单的聚合模型House,记录房屋的基本信息和评分:
public record House(Guid Id, string Name, string Address, int NumberOfRooms, decimal? Stars);
用户可以对房屋进行评分,产生UserRate事件:
public sealed record UserRate(int Rate);
初始投影设计问题
开发者最初设计的投影如下:
public class HouseProjection : SingleStreamProjection<House>
{
public async Task<House> Apply(UserRate @event, House house, IQuerySession session)
{
var events = await session.Events.FetchStreamAsync(house.Id);
var stars = events
.Where(e => e.EventType == typeof(UserRate))
.Select(e => Convert.ToDecimal(((UserRate)e.Data).Rate))
.Union([Convert.ToDecimal(@event.Rate)]);
return house with { Stars = stars.Average() };
}
}
这个设计在单个事件处理时工作正常,但在以下场景会出现问题:
- 当同一事务中包含多个
UserRate事件时 - 在投影重建过程中
问题根源在于FetchStreamAsync只返回已提交的事件,无法获取当前事务中尚未提交的事件。
解决方案分析
方案1:维护已处理事件列表
在投影内部维护一个列表,记录当前会话中已处理的事件:
public List<UserRate> _seenUserRates = new List<UserRate>();
public async Task<House> Apply(UserRate @event, House house, IQuerySession session)
{
_seenUserRates.Add(@event);
var events = await session.Events.FetchStreamAsync(house.Id);
var stars = events
.Where(e => e.EventType == typeof(UserRate))
.Select(e => Convert.ToDecimal(((UserRate)e.Data).Rate))
.Union(_seenUserRates.Select(x => Convert.ToDecimal(x.Rate)));
return house with { Stars = stars.Average() };
}
这种方法虽然可行,但增加了内存开销,且不够优雅。
方案2:使用自定义IProjection
实现IProjection接口可以完全控制事件处理流程,可以一次性处理流中的所有未决事件:
public class HouseProjection : IProjection
{
public void Apply(IDocumentOperations operations, IReadOnlyList<StreamAction> streams)
{
// 自定义处理逻辑
}
}
这种方式更灵活,但需要更多样板代码。
方案3:优化聚合设计(推荐)
最优雅的解决方案是重新设计聚合,避免在投影中查询事件流:
public async Task<House> Apply(UserRate @event, House house, IQuerySession session)
{
var numberOfRatings = house.NumberOfRatings + 1;
var totalStars = house.TotalStars + @event.Rate;
return house with
{
NumberOfRatings = numberOfRatings,
TotalStars = totalStars,
Stars = totalStars/numberOfRatings
};
}
这种设计:
- 完全避免了N+1查询问题
- 计算逻辑简单高效
- 在重建和正常运行时表现一致
- 更容易理解和维护
最佳实践建议
- 避免在投影中查询事件流:这会导致性能问题和数据一致性问题
- 设计自包含的聚合:聚合应该包含计算所需的所有状态
- 考虑增量更新:基于当前状态和新事件计算新状态,而不是重新计算所有历史
- 简化计算逻辑:复杂的计算可以分解为多个简单步骤
结论
Marten提供了灵活的事件溯源能力,但正确的投影设计至关重要。通过本文的案例分析,我们可以看到,优化聚合设计往往比在投影中处理复杂逻辑更可取。保持投影简单、高效和自包含是确保系统可靠性和性能的关键。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350