Marten事件溯源中投影重建时的数据一致性挑战
2025-06-26 17:49:56作者:霍妲思
引言
在使用Marten进行事件溯源开发时,投影(Projection)的设计是一个关键环节。本文将通过一个实际案例,探讨在投影重建过程中如何处理未提交事件的数据一致性问题,并提供几种解决方案。
案例背景
假设我们有一个简单的聚合模型House,记录房屋的基本信息和评分:
public record House(Guid Id, string Name, string Address, int NumberOfRooms, decimal? Stars);
用户可以对房屋进行评分,产生UserRate事件:
public sealed record UserRate(int Rate);
初始投影设计问题
开发者最初设计的投影如下:
public class HouseProjection : SingleStreamProjection<House>
{
public async Task<House> Apply(UserRate @event, House house, IQuerySession session)
{
var events = await session.Events.FetchStreamAsync(house.Id);
var stars = events
.Where(e => e.EventType == typeof(UserRate))
.Select(e => Convert.ToDecimal(((UserRate)e.Data).Rate))
.Union([Convert.ToDecimal(@event.Rate)]);
return house with { Stars = stars.Average() };
}
}
这个设计在单个事件处理时工作正常,但在以下场景会出现问题:
- 当同一事务中包含多个
UserRate事件时 - 在投影重建过程中
问题根源在于FetchStreamAsync只返回已提交的事件,无法获取当前事务中尚未提交的事件。
解决方案分析
方案1:维护已处理事件列表
在投影内部维护一个列表,记录当前会话中已处理的事件:
public List<UserRate> _seenUserRates = new List<UserRate>();
public async Task<House> Apply(UserRate @event, House house, IQuerySession session)
{
_seenUserRates.Add(@event);
var events = await session.Events.FetchStreamAsync(house.Id);
var stars = events
.Where(e => e.EventType == typeof(UserRate))
.Select(e => Convert.ToDecimal(((UserRate)e.Data).Rate))
.Union(_seenUserRates.Select(x => Convert.ToDecimal(x.Rate)));
return house with { Stars = stars.Average() };
}
这种方法虽然可行,但增加了内存开销,且不够优雅。
方案2:使用自定义IProjection
实现IProjection接口可以完全控制事件处理流程,可以一次性处理流中的所有未决事件:
public class HouseProjection : IProjection
{
public void Apply(IDocumentOperations operations, IReadOnlyList<StreamAction> streams)
{
// 自定义处理逻辑
}
}
这种方式更灵活,但需要更多样板代码。
方案3:优化聚合设计(推荐)
最优雅的解决方案是重新设计聚合,避免在投影中查询事件流:
public async Task<House> Apply(UserRate @event, House house, IQuerySession session)
{
var numberOfRatings = house.NumberOfRatings + 1;
var totalStars = house.TotalStars + @event.Rate;
return house with
{
NumberOfRatings = numberOfRatings,
TotalStars = totalStars,
Stars = totalStars/numberOfRatings
};
}
这种设计:
- 完全避免了N+1查询问题
- 计算逻辑简单高效
- 在重建和正常运行时表现一致
- 更容易理解和维护
最佳实践建议
- 避免在投影中查询事件流:这会导致性能问题和数据一致性问题
- 设计自包含的聚合:聚合应该包含计算所需的所有状态
- 考虑增量更新:基于当前状态和新事件计算新状态,而不是重新计算所有历史
- 简化计算逻辑:复杂的计算可以分解为多个简单步骤
结论
Marten提供了灵活的事件溯源能力,但正确的投影设计至关重要。通过本文的案例分析,我们可以看到,优化聚合设计往往比在投影中处理复杂逻辑更可取。保持投影简单、高效和自包含是确保系统可靠性和性能的关键。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 开源电子设计自动化利器:KiCad EDA全方位使用指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
260
2.52 K
deepin linux kernel
C
24
6
暂无简介
Dart
553
123
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
595
131
Ascend Extension for PyTorch
Python
94
121
仓颉编程语言命令行工具,包括仓颉包管理工具、仓颉格式化工具、仓颉多语言桥接工具及仓颉语言服务。
C++
52
67
React Native鸿蒙化仓库
JavaScript
218
301
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.02 K
600
仓颉编译器源码及 cjdb 调试工具。
C++
116
90
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
357
1.77 K