【亲测免费】 YOLOv4-Tiny-PyTorch 使用教程
2026-01-16 09:50:01作者:凌朦慧Richard
项目介绍
YOLOv4-Tiny-PyTorch 是一个基于 PyTorch 框架的 YOLOv4-Tiny 目标检测模型的实现。YOLOv4-Tiny 是 YOLOv4 的轻量级版本,旨在提供更快的检测速度,适用于资源受限的设备,如嵌入式系统和移动设备。该项目提供了完整的源码,允许用户训练自己的模型并进行目标检测。
项目快速启动
环境配置
- 安装 Python:确保你已经安装了 Python 3.6 或更高版本。
- 克隆仓库:
git clone https://github.com/bubbliiiing/yolov4-tiny-pytorch.git cd yolov4-tiny-pytorch - 安装依赖:
pip install -r requirements.txt
训练模型
- 准备数据集:将你的数据集按照项目要求的格式准备好。
- 修改配置文件:根据你的数据集修改
cfg/yolov4-tiny.cfg文件中的相关参数。 - 开始训练:
python train.py --data data/coco.data --cfg cfg/yolov4-tiny.cfg --weights weights/yolov4-tiny.weights
模型推理
- 加载模型:
from models import Yolov4Tiny model = Yolov4Tiny(cfg='cfg/yolov4-tiny.cfg', weights='weights/best.pt') model.eval() - 进行推理:
from utils import detect_image image_path = 'path/to/your/image.jpg' result = detect_image(model, image_path)
应用案例和最佳实践
案例一:实时目标检测
在嵌入式系统上部署 YOLOv4-Tiny 模型,实现实时目标检测。通过优化模型和硬件加速,可以在 Raspberry Pi 等设备上实现流畅的检测效果。
案例二:图像分割与目标检测
结合图像分割技术,对高分辨率图像进行预处理,将图像分割为多个小图,再使用 YOLOv4-Tiny 进行目标检测,提高检测精度。
最佳实践
- 数据增强:使用数据增强技术提高模型的泛化能力。
- 模型剪枝:通过模型剪枝减少模型参数,提高推理速度。
- 多尺度训练:使用多尺度训练策略,提高模型对不同尺度目标的检测能力。
典型生态项目
1. DOTA 数据集
DOTA 数据集是一个用于航空图像目标检测的大型数据集,适用于训练和评估 YOLOv4-Tiny 模型在复杂场景下的性能。
2. ROS 集成
将 YOLOv4-Tiny 模型集成到 ROS(机器人操作系统)中,实现机器人视觉系统的目标检测功能。
3. PyTorch 生态
利用 PyTorch 生态中的其他工具和库,如 torchvision、torchserve 等,进一步优化和部署 YOLOv4-Tiny 模型。
通过以上内容,你可以快速上手并深入了解 YOLOv4-Tiny-PyTorch 项目,结合实际应用场景进行开发和优化。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0111
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
用Python打造高效自动升级系统,提升软件迭代体验【免费下载】 轻松在UOS ARM系统上安装VLC播放器:一键离线安装包推荐【亲测免费】 Minigalaxy:一个简洁的GOG客户端为Linux用户设计【亲测免费】 NewHorizonMod 项目使用教程【亲测免费】 Pentaho Data Integration (webSpoon) 项目推荐【免费下载】 探索荧光显微图像去噪的利器:FMD数据集与深度学习模型 v-network-graph 项目安装和配置指南【亲测免费】 免费开源的VR全身追踪系统:April-Tag-VR-FullBody-Tracker GooglePhotosTakeoutHelper 项目使用教程 sqlserver2pgsql 项目推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
485
3.59 K
Ascend Extension for PyTorch
Python
297
329
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
260
111
暂无简介
Dart
735
177
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
861
456
React Native鸿蒙化仓库
JavaScript
294
343
仓颉编译器源码及 cjdb 调试工具。
C++
148
880