CBAM-TensorFlow-Slim 使用教程
2024-08-30 09:01:07作者:姚月梅Lane
项目介绍
CBAM-TensorFlow-Slim 是一个基于 TensorFlow Slim 库实现的卷积块注意力模块(CBAM)的项目。CBAM 是一种用于增强卷积神经网络(CNN)表示能力的技术,通过引入注意力机制来聚焦于重要的特征并抑制不必要的特征。该项目还包括 SENet 的实现,旨在与 TensorFlow-Slim 图像分类模型库兼容。
项目快速启动
环境准备
确保你已经安装了以下依赖:
- Python 3.x
- TensorFlow 1.x
- TF-slim
克隆项目
git clone https://github.com/kobiso/CBAM-tensorflow-slim.git
cd CBAM-tensorflow-slim
训练模型
以下是一个使用 CBAM 模块训练模型的示例脚本:
DATASET_DIR=/DIRECTORY/TO/DATASET
TRAIN_DIR=/DIRECTORY/TO/TRAIN
CUDA_VISIBLE_DEVICES=0 python train_image_classifier.py \
--train_dir=${TRAIN_DIR} \
--dataset_name=imagenet \
--dataset_split_name=train \
--dataset_dir=${DATASET_DIR} \
--model_name=resnet_v1_50 \
--batch_size=100 \
--attention_module=cbam_block
评估模型
以下是一个评估模型的示例脚本:
CHECKPOINT_FILE=/DIRECTORY/TO/CHECKPOINT
EVAL_DIR=/DIRECTORY/TO/EVAL
CUDA_VISIBLE_DEVICES=0 python eval_image_classifier_loop.py \
--alsologtostderr \
--checkpoint_path=${CHECKPOINT_FILE} \
--dataset_dir=${DATASET_DIR} \
--eval_dir=${EVAL_DIR} \
--dataset_name=imagenet \
--dataset_split_name=validation \
--model_name=resnet_v1_50 \
--batch_size=100
应用案例和最佳实践
案例1:图像分类
CBAM 模块可以集成到各种卷积神经网络中,如 ResNet 和 Inception 系列,以提高图像分类任务的性能。通过在 ImageNet 数据集上进行训练和评估,可以观察到显著的性能提升。
案例2:目标检测
除了图像分类,CBAM 模块还可以应用于目标检测任务。通过在 Faster R-CNN 或 YOLO 等目标检测框架中集成 CBAM 模块,可以提高模型对目标的识别和定位能力。
典型生态项目
CBAM-TensorFlow
这是一个包含简单 TensorFlow 实现的 CBAM 项目,支持 ResNext、Inception-V4 和 Inception-ResNet-V2 等模型,并在 CIFAR-10 数据集上进行了测试。
CBAM-Keras
这是一个基于 Keras 的 CBAM 实现,适用于希望在 Keras 框架中使用 CBAM 模块的开发者。
SENet-TensorFlow-Slim
这是 SENet 在 TensorFlow Slim 库中的实现,可以与 CBAM 一起使用,以进一步提高模型的表示能力。
通过这些生态项目,开发者可以灵活选择适合自己需求的 CBAM 实现,并将其应用于各种深度学习任务中。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K