推荐:CBAM-TensorFlow - 增强卷积网络的注意力机制
项目介绍
【CBAM-TensorFlow】是一个基于TensorFlow实现的深度学习项目,它引入了名为“CBAM(Convolutional Block Attention Module)”的模块,该模块源自《CBAM: Convolutional Block Attention Module》的研究论文。此外,该项目还包含了"Squeeze-and-Excitation Networks"(SE块)的实现,让你能够比较基础CNN模型、带有CBAM块的模型和带有SE块的模型之间的性能。
项目中的基础CNN模型包括ResNext、Inception-V4和Inception-ResNet-V2,并且这些模型的代码均基于Junho Kim的SENet-Tensorflow进行修改。如果你想要更先进的实现或支持更多基础模型,请查看其姐妹项目【CBAM-TensorFlow-Slim】,它是对TensorFlow-Slim图像分类模型库的扩展。
项目技术分析
CBAM模块采用了注意力机制来提高网络的表示能力,通过聚焦重要特征并抑制不必要的信息。它由两部分组成:全局平均池化后的挤压子模块用于捕获全局上下文信息,以及一连串的卷积层和激活函数组成的兴奋子模块,用于增强特征映射。这样的设计使得网络在处理复杂图像时更具选择性,从而提升识别精度。
应用场景
CBAM-TensorFlow适用于任何需要增强模型表现力的计算机视觉任务,如图像分类、目标检测和语义分割等。通过在现有的CNN架构上添加CBAM或SE模块,你可以优化模型以获得更好的结果。
项目特点
- 简单集成:提供易于理解和集成的CBAM和SE模块,可以轻松地应用到多种CNN模型上。
- 高效性能:实验证明,加入CBAM或SE块后,模型在ImageNet-1K数据集上的分类效果显著提高。
- 自定义配置:允许调整如Reduction ratio等参数,以适应不同的模型和任务需求。
- 自动数据下载:训练脚本会自动下载Cifar10数据集,方便快速启动实验。
开始使用
使用CBAM-TensorFlow非常简单,只需几个命令即可开始训练。例如,要训练一个带有CBAM块的ResNeXt模型,你可以运行:
CUDA_VISIBLE_DEVICES=0 python ResNeXt.py \
--model_name your_model_name \
--attention_module cbam_block \
--reduction_ratio 8 \
--learning_rate 0.1 \
--weight_decay 0.0005 \
--momentum 0.9 \
--batch_size 128 \
--total_epoch 100
如果你需要更多的帮助和示例,或者想要尝试其他模型,可以查看项目文档和提供的训练脚本。
总的来说,CBAM-TensorFlow是一个强大的工具,可以帮助你利用注意力机制提升CNN模型的效能。无论是研究还是实际应用,它都是一个值得尝试的开源项目。立即行动,发掘你的模型潜力吧!
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00