```markdown
2024-06-21 17:36:30作者:裘旻烁
# **JoCoR:一种对抗噪声标签的革命性训练方法**
在深度学习领域中,处理带有噪声的数据标签是一项挑战性的任务,尤其是在弱监督学习情境下。JoCoR,出自于CVPR'20的一篇论文,提出了一种基于“一致性”的全新视角来解决这一问题。不同于传统的“分歧”策略,JoCoR通过联合训练两个网络,并借助协同正则化(Co-Regularization),减少它们之间的预测差异。这种方法显著提升了模型在面对基准数据集如MNIST、CIFAR-10和CIFAR-100以及Clothing1M上含有噪声标签时的表现。
## 技术剖析
### 联合训练与协同正则化
JoCoR的核心在于**联合损失函数**的设计。它利用两个独立的神经网络对同一批次的数据进行预测,然后计算一个综合了这两个网络预测结果的损失值,这个过程被称为**协同正则化**。通过这种方式,两个网络相互影响,逐渐缩小其间的预测差距。
### 小损失样本更新
接着,JoCoR会选择那些产生较小损失的样本用于参数更新。这种策略有助于网络更加聚焦于高质量的训练数据,从而减少由噪声标签带来的负面影响。
### 参数`Lambda`
在实施过程中,有一个关键超参数`Lambda`,用于调整Co-Regularization项的影响程度。它的最佳值依赖于具体的数据集特性、噪声率以及基础模型的选择。实验表明,在不同设置下寻找合适的`Lambda`值可以进一步优化模型性能。
## 应用场景
### 噪声标签下的分类
JoCoR特别适合应用于图像识别或文本分类等任务,其中训练数据可能受到各种类型的噪声污染,例如错误标记或不一致的注释。通过对双网络的协同训练,JoCoR能够更有效地从嘈杂的数据集中提取有用的信息。
## 独特优势
- **鲁棒性提升**:JoCoR能有效抵抗高比例噪声标签的影响,保持模型的良好泛化能力。
- **创新训练策略**:通过引入协同正则化机制,JoCoR不仅提高了模型在标准数据集上的表现,还为处理实际世界中的噪声数据提供了新的思路。
- **灵活性**:JoCoR框架易于实现且可定制性强,允许研究者根据特定应用需求调整`Lambda`值和其他相关参数,以达到最优效果。
总之,JoCoR为深度学习社区提供了一个强大的工具,帮助应对噪声标签所带来的挑战。无论是学术研究人员还是工业界开发者,都能够从中获益匪浅。尝试一下JoCoR,体验它如何为您的机器学习项目带来改变吧!
---
参考文献:
[JoCoR论文](https://openaccess.thecvf.com/content_CVPR_2020/html/Wei_Combating_Noisy_Labels_by_Agreement_A_Joint_Training_Method_with_CVPR_2020_paper.html)
[JoCoR代码仓库](https://github.com/hongxin001/JoCoR)
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MarkdownMonster中SSH克隆功能的实现与替代方案探讨 Scramble项目中的文档注释格式化问题解析 QLMarkdown项目设置保存错误分析与解决方案 VSCode Markdown Preview Enhanced插件导出PDF问题解决方案 Elog项目支持语雀公式LaTeX导出功能解析 Grafana Beyla项目文档优化实践指南 Elog项目中的Notion公式导出问题分析与解决方案 MarkdownMonster拼写检查功能中单引号导致的定位偏移问题解析 Explorer Tab Utility v2.2.0:Windows资源管理器增强工具全面升级 Datawhale Key-Book项目PDF版本获取指南
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
411
3.16 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
323
Ascend Extension for PyTorch
Python
227
255
暂无简介
Dart
677
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
342
146