```markdown
2024-06-21 17:36:30作者:裘旻烁
# **JoCoR:一种对抗噪声标签的革命性训练方法**
在深度学习领域中,处理带有噪声的数据标签是一项挑战性的任务,尤其是在弱监督学习情境下。JoCoR,出自于CVPR'20的一篇论文,提出了一种基于“一致性”的全新视角来解决这一问题。不同于传统的“分歧”策略,JoCoR通过联合训练两个网络,并借助协同正则化(Co-Regularization),减少它们之间的预测差异。这种方法显著提升了模型在面对基准数据集如MNIST、CIFAR-10和CIFAR-100以及Clothing1M上含有噪声标签时的表现。
## 技术剖析
### 联合训练与协同正则化
JoCoR的核心在于**联合损失函数**的设计。它利用两个独立的神经网络对同一批次的数据进行预测,然后计算一个综合了这两个网络预测结果的损失值,这个过程被称为**协同正则化**。通过这种方式,两个网络相互影响,逐渐缩小其间的预测差距。
### 小损失样本更新
接着,JoCoR会选择那些产生较小损失的样本用于参数更新。这种策略有助于网络更加聚焦于高质量的训练数据,从而减少由噪声标签带来的负面影响。
### 参数`Lambda`
在实施过程中,有一个关键超参数`Lambda`,用于调整Co-Regularization项的影响程度。它的最佳值依赖于具体的数据集特性、噪声率以及基础模型的选择。实验表明,在不同设置下寻找合适的`Lambda`值可以进一步优化模型性能。
## 应用场景
### 噪声标签下的分类
JoCoR特别适合应用于图像识别或文本分类等任务,其中训练数据可能受到各种类型的噪声污染,例如错误标记或不一致的注释。通过对双网络的协同训练,JoCoR能够更有效地从嘈杂的数据集中提取有用的信息。
## 独特优势
- **鲁棒性提升**:JoCoR能有效抵抗高比例噪声标签的影响,保持模型的良好泛化能力。
- **创新训练策略**:通过引入协同正则化机制,JoCoR不仅提高了模型在标准数据集上的表现,还为处理实际世界中的噪声数据提供了新的思路。
- **灵活性**:JoCoR框架易于实现且可定制性强,允许研究者根据特定应用需求调整`Lambda`值和其他相关参数,以达到最优效果。
总之,JoCoR为深度学习社区提供了一个强大的工具,帮助应对噪声标签所带来的挑战。无论是学术研究人员还是工业界开发者,都能够从中获益匪浅。尝试一下JoCoR,体验它如何为您的机器学习项目带来改变吧!
---
参考文献:
[JoCoR论文](https://openaccess.thecvf.com/content_CVPR_2020/html/Wei_Combating_Noisy_Labels_by_Agreement_A_Joint_Training_Method_with_CVPR_2020_paper.html)
[JoCoR代码仓库](https://github.com/hongxin001/JoCoR)
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
最新内容推荐
Mac Mouse Fix终极指南:5分钟让普通鼠标在Mac上实现专业级操作体验欢迎使用HyperDownAnt Design X Vue终极指南:5步构建企业级AI对话应用3步搞定Obsidian云同步:免费工具remotely-save实战指南3分钟掌握note-gen:这款开源Markdown笔记为何如此好用?fabric终极指南:200+AI提示模式完整实战手册零基础3分钟搞定:浏览器Markdown文件完美预览终极指南Obsidian知识管理:Docker容器化部署全攻略md2pptx智能转换:如何用Markdown一键生成专业PPT演示文稿feishu-doc-export:飞书文档批量导出的终极解决方案
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.77 K
Ascend Extension for PyTorch
Python
347
413
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
607
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
184
暂无简介
Dart
778
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896