PyKAN项目中GPU加速与设备管理的优化实践
2025-05-14 14:20:28作者:董灵辛Dennis
引言
在深度学习模型训练过程中,合理利用GPU资源可以显著提升计算效率。本文以PyKAN项目为例,探讨如何优化设备管理策略,实现CPU与GPU之间的高效数据流转,特别是在处理符号计算和网格搜索等场景下的最佳实践。
设备初始化与管理
PyKAN项目首先需要明确计算设备的选择策略。通过以下代码可以自动检测并选择可用的计算设备:
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
这一行代码实现了设备选择的自动化,优先使用GPU(如果可用),否则回退到CPU。这种策略确保了代码在不同硬件环境下的可移植性。
数据预处理与设备转移
在Moon数据集示例中,需要对数据进行适当的预处理和设备转移:
- 将NumPy数组转换为PyTorch张量
- 将张量移动到目标设备
- 注意保持数据维度一致性
dataset['train_input'] = torch.from_numpy(train_input.astype(np.float32)).to(device)
dataset['test_input'] = torch.from_numpy(test_input.astype(np.float32)).to(device)
dataset['train_label'] = torch.from_numpy(train_label[:,None]).to(device)
dataset['test_label'] = torch.from_numpy(test_label[:,None]).to(device)
特别需要注意的是标签数据的维度处理,通过[:,None]
操作增加了必要的维度。
模型初始化与训练
KAN模型的初始化也需要指定目标设备:
model = KAN(width=[2,1], grid=3, k=3, device=device)
在训练过程中,同样需要传递设备信息:
results = model.train(dataset, opt="LBFGS", steps=1, metrics=(train_acc, test_acc), device=device)
计算过程中的设备管理
在符号计算和网格搜索场景下,需要特别注意:
- 将网格参数移动到目标设备
- 执行计算
- 将结果移回CPU进行后续处理
post_fun = fun(a_grid[None,:,:].to(device) * x[:,None,None] + b_grid[None,:,:].to(device))
post_fun = post_fun.cpu()
y = y.cpu()
post_fun = torch.nan_to_num(post_fun)
这种模式确保了计算在GPU上高效执行,同时结果可以在CPU上进行后续处理或可视化。
可视化时的注意事项
当需要可视化计算结果时,必须确保数据位于CPU上:
plt.scatter(X[:,0].cpu(), X[:,1].cpu(), c=y[:,0].cpu())
回归任务中的特殊处理
在回归任务中计算准确率时,同样需要注意设备转移:
y = y.cpu().numpy()
最佳实践总结
- 统一设备管理:在代码开始处统一设置设备变量,避免硬编码
- 显式设备转移:明确每个张量的设备位置,避免隐式转移带来的性能问题
- 计算与可视化分离:计算阶段使用GPU,可视化阶段移回CPU
- 维度一致性:注意保持张量维度在不同设备间转移时的一致性
- 异常处理:使用
torch.nan_to_num
等方法处理可能的数值异常
通过以上优化策略,PyKAN项目可以在不同硬件配置下实现高效的计算和训练,同时保持代码的清晰性和可维护性。
登录后查看全文
热门项目推荐
相关项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0265cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
273

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8