CoFiPruning: 结构化剪枝学习紧凑且准确模型
2024-09-21 21:06:42作者:傅爽业Veleda
1. 项目介绍
CoFiPruning 是一个由普林斯顿大学提出的针对特定任务的结构化剪枝方法。该方法通过联合剪枝粗粒度(如自注意力或前馈层)和细粒度(如头、隐藏维度)模块,实现了高度并行化的子网络,并在不需要任何未标记数据的情况下,达到了与蒸馏方法相当的准确性和延迟。CoFiPruning 的关键洞察是使用不同粒度的多个掩码来控制每个参数的剪枝决策,这提供了最大的剪枝结构灵活性,并简化了优化过程。
2. 项目快速启动
以下是快速启动 CoFiPruning 项目的步骤:
首先,安装必要的依赖:
pip install -r requirements.txt
然后,运行以下脚本来开始训练:
bash scripts/run_CoFi.sh [TASK] [EX_NAME_SUFFIX] [EX_CATE] [PRUNING_TYPE] [TARGET_SPARSITY] [DISTILLATION_PATH] [DISTILL_LAYER_LOSS_ALPHA] [DISTILL_CE_LOSS_ALPHA] [LAYER_DISTILL_VERSION] [SPARSITY_EPSILON]
其中,[TASK] 是要执行的任务名称,例如 MNLI、QNLI 等;[EX_NAME_SUFFIX] 和 [EX_CATE] 是实验名称和类别后缀;[PRUNING_TYPE] 是剪枝类型;[TARGET_SPARSITY] 是目标稀疏度;[DISTILLATION_PATH] 是教师模型的路径;[DISTILL_LAYER_LOSS_ALPHA] 和 [DISTILL_CE_LOSS_ALPHA] 是层蒸馏和交叉熵蒸馏的权重;[LAYER_DISTILL_VERSION] 是层蒸馏版本;[SPARSITY_EPSILON] 是稀疏度约束的松弛因子。
3. 应用案例和最佳实践
以下是使用 CoFiPruning 的一些应用案例和最佳实践:
- 在 GLUE 和 SQuAD 数据集上进行剪枝,实现超过 10x 的速度提升,同时只牺牲少量准确性。
- 使用层蒸馏策略在优化过程中从未剪枝模型转移知识到剪枝模型。
- 在小规模数据集上,进行超参数搜索以获得最佳性能;在大规模数据集上,超参数的影响较小。
4. 典型生态项目
CoFiPruning 的典型生态项目包括:
- 使用 HuggingFace 接口的模型库,方便用户下载和使用已经剪枝的模型。
- 提供示例训练脚本和评估脚本来帮助用户快速开始自己的项目。
- 开发社区支持,用户可以在 GitHub 上提出问题和建议,以促进项目的进一步发展。
热门项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
825
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5