CoFiPruning 使用指南
一、项目目录结构及介绍
CoFiPruning 是一个基于结构化剪枝的学习紧凑且精确模型的方法,提出的框架在 ACL 2022 上发表。以下是该仓库的基本目录结构及其简介:
CoFiPruning/
│
├── ACL2022_talk.pdf # ACL 2022 讲座幻灯片
├── figures # 图表和可视化资料
├── models # 模型相关文件或预训练模型的说明
├── notebooks # Jupyter Notebook 形式的教程或实验代码
├── scripts # 包含主要运行脚本,如训练和评估脚本
│ ├── run_CoFi.sh # 主要的训练脚本
│ └── ...
├── trainer # 训练器相关的实现
├── utils # 工具函数集合
├── .gitignore # Git 忽略文件配置
├── LICENSE # 开源许可证文件
├── README.md # 项目的主要说明文档
├── args.py # 脚本运行时的参数定义
├── evaluation.py # 用于模型评估的脚本
├── glue.py # 针对 GLUE 数据集的任务处理脚本
├── requirements.txt # 项目依赖库列表
├── run.sh # 运行脚本示例
├── run_glue_prune.py # GLUE 剪枝任务运行脚本
├── run_qa_prune.py # 问答任务剪枝运行脚本
└── test.py # 测试脚本
二、项目的启动文件介绍
核心脚本:scripts/run_CoFi.sh
这个脚本是用于执行 CoFiPruning 方法的核心训练脚本。它支持以不同的训练单元和目标组合进行训练,并能够用于模型的剪枝过程。通过调整脚本中的参数,你可以控制模型的剪枝类型(如头部、MLP层、隐藏状态、层的剪枝),目标稀疏度,以及是否采用蒸馏策略等关键因素。此外,脚本还提供选项来继续对剪枝后的模型进行微调。
例如,以下命令将启动针对MNLI任务的剪枝过程,目标稀疏度为95%,并使用特定的超参数配置:
bash scripts/run_CoFi.sh MNLI sparsity0.95 CoFi structured_heads+structured_mlp+hidden+layer 0.95 [DISTILLATION_PATH] 0.9 0.1 4 0.01
三、项目的配置文件介绍
CoFiPruning 的配置更多是通过命令行参数来指定,而不是传统的独立配置文件。用户在运行 scripts/run_CoFi.sh 或其他脚本时,需要通过命令行参数来设定诸如任务名称(--task_name)、实验分类名(--ex_cate)、剪枝类型(--pruning_type)、目标稀疏度(--target_sparsity)等重要配置项。这些参数直接决定了模型训练和剪枝的过程。
虽然没有单独的配置文件,但可以通过创建脚本或环境变量的方式来管理这些配置,保证实验的一致性和可复现性。例如,可以设置环境变量存储常使用的参数值,或者创建一系列脚本文件,每个文件对应一套不同的实验设置。
为了更细致地控制训练流程和模型设置,开发者可以在 args.py 中添加或修改默认参数,间接作为“配置”的一部分。这要求用户熟悉Python和项目内部逻辑,以便自定义配置而不直接通过外部配置文件。
请注意,为了使用该项目,你需要安装必要的依赖项,这些信息通常记录在 requirements.txt 文件中,通过运行 pip install -r requirements.txt 来安装。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00