CoFiPruning 使用指南
一、项目目录结构及介绍
CoFiPruning 是一个基于结构化剪枝的学习紧凑且精确模型的方法,提出的框架在 ACL 2022 上发表。以下是该仓库的基本目录结构及其简介:
CoFiPruning/
│
├── ACL2022_talk.pdf # ACL 2022 讲座幻灯片
├── figures # 图表和可视化资料
├── models # 模型相关文件或预训练模型的说明
├── notebooks # Jupyter Notebook 形式的教程或实验代码
├── scripts # 包含主要运行脚本,如训练和评估脚本
│ ├── run_CoFi.sh # 主要的训练脚本
│ └── ...
├── trainer # 训练器相关的实现
├── utils # 工具函数集合
├── .gitignore # Git 忽略文件配置
├── LICENSE # 开源许可证文件
├── README.md # 项目的主要说明文档
├── args.py # 脚本运行时的参数定义
├── evaluation.py # 用于模型评估的脚本
├── glue.py # 针对 GLUE 数据集的任务处理脚本
├── requirements.txt # 项目依赖库列表
├── run.sh # 运行脚本示例
├── run_glue_prune.py # GLUE 剪枝任务运行脚本
├── run_qa_prune.py # 问答任务剪枝运行脚本
└── test.py # 测试脚本
二、项目的启动文件介绍
核心脚本:scripts/run_CoFi.sh
这个脚本是用于执行 CoFiPruning 方法的核心训练脚本。它支持以不同的训练单元和目标组合进行训练,并能够用于模型的剪枝过程。通过调整脚本中的参数,你可以控制模型的剪枝类型(如头部、MLP层、隐藏状态、层的剪枝),目标稀疏度,以及是否采用蒸馏策略等关键因素。此外,脚本还提供选项来继续对剪枝后的模型进行微调。
例如,以下命令将启动针对MNLI任务的剪枝过程,目标稀疏度为95%,并使用特定的超参数配置:
bash scripts/run_CoFi.sh MNLI sparsity0.95 CoFi structured_heads+structured_mlp+hidden+layer 0.95 [DISTILLATION_PATH] 0.9 0.1 4 0.01
三、项目的配置文件介绍
CoFiPruning 的配置更多是通过命令行参数来指定,而不是传统的独立配置文件。用户在运行 scripts/run_CoFi.sh 或其他脚本时,需要通过命令行参数来设定诸如任务名称(--task_name)、实验分类名(--ex_cate)、剪枝类型(--pruning_type)、目标稀疏度(--target_sparsity)等重要配置项。这些参数直接决定了模型训练和剪枝的过程。
虽然没有单独的配置文件,但可以通过创建脚本或环境变量的方式来管理这些配置,保证实验的一致性和可复现性。例如,可以设置环境变量存储常使用的参数值,或者创建一系列脚本文件,每个文件对应一套不同的实验设置。
为了更细致地控制训练流程和模型设置,开发者可以在 args.py 中添加或修改默认参数,间接作为“配置”的一部分。这要求用户熟悉Python和项目内部逻辑,以便自定义配置而不直接通过外部配置文件。
请注意,为了使用该项目,你需要安装必要的依赖项,这些信息通常记录在 requirements.txt 文件中,通过运行 pip install -r requirements.txt 来安装。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00