CoFiPruning 使用指南
一、项目目录结构及介绍
CoFiPruning 是一个基于结构化剪枝的学习紧凑且精确模型的方法,提出的框架在 ACL 2022 上发表。以下是该仓库的基本目录结构及其简介:
CoFiPruning/
│
├── ACL2022_talk.pdf # ACL 2022 讲座幻灯片
├── figures # 图表和可视化资料
├── models # 模型相关文件或预训练模型的说明
├── notebooks # Jupyter Notebook 形式的教程或实验代码
├── scripts # 包含主要运行脚本,如训练和评估脚本
│ ├── run_CoFi.sh # 主要的训练脚本
│ └── ...
├── trainer # 训练器相关的实现
├── utils # 工具函数集合
├── .gitignore # Git 忽略文件配置
├── LICENSE # 开源许可证文件
├── README.md # 项目的主要说明文档
├── args.py # 脚本运行时的参数定义
├── evaluation.py # 用于模型评估的脚本
├── glue.py # 针对 GLUE 数据集的任务处理脚本
├── requirements.txt # 项目依赖库列表
├── run.sh # 运行脚本示例
├── run_glue_prune.py # GLUE 剪枝任务运行脚本
├── run_qa_prune.py # 问答任务剪枝运行脚本
└── test.py # 测试脚本
二、项目的启动文件介绍
核心脚本:scripts/run_CoFi.sh
这个脚本是用于执行 CoFiPruning 方法的核心训练脚本。它支持以不同的训练单元和目标组合进行训练,并能够用于模型的剪枝过程。通过调整脚本中的参数,你可以控制模型的剪枝类型(如头部、MLP层、隐藏状态、层的剪枝),目标稀疏度,以及是否采用蒸馏策略等关键因素。此外,脚本还提供选项来继续对剪枝后的模型进行微调。
例如,以下命令将启动针对MNLI任务的剪枝过程,目标稀疏度为95%,并使用特定的超参数配置:
bash scripts/run_CoFi.sh MNLI sparsity0.95 CoFi structured_heads+structured_mlp+hidden+layer 0.95 [DISTILLATION_PATH] 0.9 0.1 4 0.01
三、项目的配置文件介绍
CoFiPruning 的配置更多是通过命令行参数来指定,而不是传统的独立配置文件。用户在运行 scripts/run_CoFi.sh 或其他脚本时,需要通过命令行参数来设定诸如任务名称(--task_name)、实验分类名(--ex_cate)、剪枝类型(--pruning_type)、目标稀疏度(--target_sparsity)等重要配置项。这些参数直接决定了模型训练和剪枝的过程。
虽然没有单独的配置文件,但可以通过创建脚本或环境变量的方式来管理这些配置,保证实验的一致性和可复现性。例如,可以设置环境变量存储常使用的参数值,或者创建一系列脚本文件,每个文件对应一套不同的实验设置。
为了更细致地控制训练流程和模型设置,开发者可以在 args.py 中添加或修改默认参数,间接作为“配置”的一部分。这要求用户熟悉Python和项目内部逻辑,以便自定义配置而不直接通过外部配置文件。
请注意,为了使用该项目,你需要安装必要的依赖项,这些信息通常记录在 requirements.txt 文件中,通过运行 pip install -r requirements.txt 来安装。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00