CoFiPruning 使用指南
一、项目目录结构及介绍
CoFiPruning 是一个基于结构化剪枝的学习紧凑且精确模型的方法,提出的框架在 ACL 2022 上发表。以下是该仓库的基本目录结构及其简介:
CoFiPruning/
│
├── ACL2022_talk.pdf # ACL 2022 讲座幻灯片
├── figures # 图表和可视化资料
├── models # 模型相关文件或预训练模型的说明
├── notebooks # Jupyter Notebook 形式的教程或实验代码
├── scripts # 包含主要运行脚本,如训练和评估脚本
│ ├── run_CoFi.sh # 主要的训练脚本
│ └── ...
├── trainer # 训练器相关的实现
├── utils # 工具函数集合
├── .gitignore # Git 忽略文件配置
├── LICENSE # 开源许可证文件
├── README.md # 项目的主要说明文档
├── args.py # 脚本运行时的参数定义
├── evaluation.py # 用于模型评估的脚本
├── glue.py # 针对 GLUE 数据集的任务处理脚本
├── requirements.txt # 项目依赖库列表
├── run.sh # 运行脚本示例
├── run_glue_prune.py # GLUE 剪枝任务运行脚本
├── run_qa_prune.py # 问答任务剪枝运行脚本
└── test.py # 测试脚本
二、项目的启动文件介绍
核心脚本:scripts/run_CoFi.sh
这个脚本是用于执行 CoFiPruning 方法的核心训练脚本。它支持以不同的训练单元和目标组合进行训练,并能够用于模型的剪枝过程。通过调整脚本中的参数,你可以控制模型的剪枝类型(如头部、MLP层、隐藏状态、层的剪枝),目标稀疏度,以及是否采用蒸馏策略等关键因素。此外,脚本还提供选项来继续对剪枝后的模型进行微调。
例如,以下命令将启动针对MNLI任务的剪枝过程,目标稀疏度为95%,并使用特定的超参数配置:
bash scripts/run_CoFi.sh MNLI sparsity0.95 CoFi structured_heads+structured_mlp+hidden+layer 0.95 [DISTILLATION_PATH] 0.9 0.1 4 0.01
三、项目的配置文件介绍
CoFiPruning 的配置更多是通过命令行参数来指定,而不是传统的独立配置文件。用户在运行 scripts/run_CoFi.sh
或其他脚本时,需要通过命令行参数来设定诸如任务名称(--task_name
)、实验分类名(--ex_cate
)、剪枝类型(--pruning_type
)、目标稀疏度(--target_sparsity
)等重要配置项。这些参数直接决定了模型训练和剪枝的过程。
虽然没有单独的配置文件,但可以通过创建脚本或环境变量的方式来管理这些配置,保证实验的一致性和可复现性。例如,可以设置环境变量存储常使用的参数值,或者创建一系列脚本文件,每个文件对应一套不同的实验设置。
为了更细致地控制训练流程和模型设置,开发者可以在 args.py
中添加或修改默认参数,间接作为“配置”的一部分。这要求用户熟悉Python和项目内部逻辑,以便自定义配置而不直接通过外部配置文件。
请注意,为了使用该项目,你需要安装必要的依赖项,这些信息通常记录在 requirements.txt
文件中,通过运行 pip install -r requirements.txt
来安装。
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04