Cacheable项目中的BigInt存储问题与解决方案
Cacheable是一个基于Keyv的缓存管理库,它提供了多级缓存和灵活的存储策略。在实际使用过程中,开发者可能会遇到无法直接存储包含BigInt类型数据对象的问题。本文将深入分析这一问题的根源,并提供两种有效的解决方案。
问题背景
Cacheable默认会对所有存储的数据进行序列化处理,这在大多数情况下是合理的,但当我们需要在内存缓存中存储包含BigInt或Date等特殊类型的对象时,这种自动序列化反而会成为障碍。特别是当使用KeyvCacheableMemory作为主存储时,虽然它是内存存储,但仍然会经过Keyv的序列化处理。
问题分析
问题的核心在于Keyv默认使用的JSON序列化无法正确处理BigInt类型。当尝试存储包含BigInt的对象时,序列化过程会失败,导致set操作返回false。这种设计对于需要持久化的存储后端是必要的,但对于纯内存缓存来说,可能增加了不必要的开销。
解决方案
方案一:禁用序列化(推荐)
从Keyv v5.2.1开始,可以通过显式设置serialize和deserialize为undefined来完全绕过序列化过程:
import Keyv from 'keyv';
import {KeyvCacheableMemory, Cacheable} from 'cacheable';
const primary = new Keyv({ store: new KeyvCacheableMemory() });
primary.serialize = undefined;
primary.deserialize = undefined;
const cache = new Cacheable({ primary });
这种方法简单直接,特别适合纯内存缓存场景,能完整保留对象的所有类型信息,包括BigInt和Date等特殊类型。
方案二:自定义序列化
如果项目需要同时支持内存缓存和其他类型的存储,或者需要保持序列化的一致性,可以使用支持BigInt的自定义序列化方案:
import Keyv from 'keyv';
import {KeyvCacheableMemory, Cacheable} from 'cacheable';
const primary = new Keyv({
store: new KeyvCacheableMemory(),
serialize: customSerialize,
deserialize: customDeserialize
});
const cache = new Cacheable({ primary });
其中customSerialize和customDeserialize需要实现能够处理BigInt等特殊类型的序列化逻辑,可以考虑使用如superjson或devalue等专门的序列化库。
最佳实践建议
- 纯内存缓存场景:优先考虑禁用序列化方案,性能最佳且类型信息完整
- 混合存储场景:使用自定义序列化方案确保数据一致性
- 类型安全:即使禁用序列化,也建议在应用层对缓存数据的类型进行检查
- 性能监控:对于高频访问的缓存键,建议监控其访问性能
总结
Cacheable库的灵活性允许开发者根据实际需求调整序列化策略。理解底层机制后,我们可以针对不同场景选择最适合的解决方案。对于内存缓存这种不需要持久化的场景,禁用序列化是最简单高效的方案,能够完美支持包含BigInt等特殊类型的对象存储。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00