D2L项目解析:推荐系统中的个性化排序技术
2025-06-04 04:25:33作者:伍霜盼Ellen
推荐系统是现代互联网应用中不可或缺的核心技术之一。在D2L项目的推荐系统章节中,特别探讨了基于个性化排序的推荐方法,这为解决实际业务中的隐式反馈问题提供了重要思路。本文将深入解析这一技术,帮助读者理解其原理与实现。
从显式反馈到隐式反馈的演进
传统推荐系统主要依赖显式反馈数据(如用户评分),但这种方法存在两个显著缺陷:
- 数据获取成本高:显式反馈需要用户主动参与,收集难度大且数据稀疏
- 忽略未观测数据:未评分的用户-物品对被完全忽视,而这些数据可能包含重要信息
在实际应用中,未观测的用户-物品对实际上包含两种可能:用户真正不感兴趣的物品(负反馈)和用户尚未接触但可能感兴趣的物品(缺失值)。传统矩阵分解等方法无法区分这两种情况,因此不适合个性化排序任务。
个性化排序的三大方法
针对隐式反馈场景,现代推荐系统发展出三类主要的排序优化方法:
1. 逐点方法(Pointwise)
- 每次考虑单个交互
- 训练分类器或回归器预测个体偏好
- 代表方法:矩阵分解、AutoRec
2. 配对方法(Pairwise)
- 每次考虑一对物品
- 近似该配对的最优排序
- 更符合排序任务本质
- 代表方法:BPR损失、Hinge损失
3. 列表方法(Listwise)
- 直接优化整个物品列表的排序
- 可优化NDCG等排序指标
- 计算复杂度较高
贝叶斯个性化排序(BPR)详解
BPR损失是推荐系统中广泛使用的配对排序损失,源自最大后验估计器。其核心思想是:假设用户对已交互物品的偏好高于所有未观测物品。
数学建模
训练数据由三元组构成,表示用户偏好物品胜过物品。BPR的贝叶斯公式为:
其中表示推荐模型参数,表示用户对所有物品的个性化排序。通过最大后验估计推导出优化准则:
代码实现
D2L项目中提供了基于MXNet的BPR损失实现:
class BPRLoss(gluon.loss.Loss):
def __init__(self, weight=None, batch_axis=0, **kwargs):
super(BPRLoss, self).__init__(weight=None, batch_axis=0, **kwargs)
def forward(self, positive, negative):
distances = positive - negative
loss = - np.sum(np.log(npx.sigmoid(distances)), 0, keepdims=True)
return loss
实现要点:
- 计算正样本和负样本的得分差
- 通过sigmoid函数转换为概率
- 取对数后求和作为最终损失
铰链损失(Hinge Loss)变体
推荐系统中使用的铰链损失与分类任务中的标准铰链损失有所不同,其形式为:
其中为安全边际大小,目的是将负样本推离正样本。
代码实现
class HingeLossbRec(gluon.loss.Loss):
def __init__(self, weight=None, batch_axis=0, **kwargs):
super(HingeLossbRec, self).__init__(weight=None, batch_axis=0, **kwargs)
def forward(self, positive, negative, margin=1):
distances = positive - negative
loss = np.sum(np.maximum(- distances + margin, 0))
return loss
实现特点:
- 计算正负样本得分差
- 应用边际约束
- 只惩罚不满足边际条件的样本
技术选型建议
- BPR损失更适合希望概率化解释的场景
- Hinge损失在需要明确边际控制时表现更好
- 两种方法都优于逐点方法,计算复杂度低于列表方法
扩展思考
- 如何调整BPR中的sigmoid函数来改善性能?
- 安全边际的大小如何影响Hinge损失的效果?
- 能否结合两种损失函数的优点设计新的优化目标?
D2L项目通过对这些基础排序技术的清晰讲解和实现,为推荐系统领域的学习者提供了宝贵的实践指导。理解这些排序损失函数的原理和实现,是构建高效推荐系统的重要基础。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0136
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
470
3.48 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
718
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
212
85
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1