D2L项目解析:推荐系统中的个性化排序技术
2025-06-04 05:38:41作者:伍霜盼Ellen
推荐系统是现代互联网应用中不可或缺的核心技术之一。在D2L项目的推荐系统章节中,特别探讨了基于个性化排序的推荐方法,这为解决实际业务中的隐式反馈问题提供了重要思路。本文将深入解析这一技术,帮助读者理解其原理与实现。
从显式反馈到隐式反馈的演进
传统推荐系统主要依赖显式反馈数据(如用户评分),但这种方法存在两个显著缺陷:
- 数据获取成本高:显式反馈需要用户主动参与,收集难度大且数据稀疏
- 忽略未观测数据:未评分的用户-物品对被完全忽视,而这些数据可能包含重要信息
在实际应用中,未观测的用户-物品对实际上包含两种可能:用户真正不感兴趣的物品(负反馈)和用户尚未接触但可能感兴趣的物品(缺失值)。传统矩阵分解等方法无法区分这两种情况,因此不适合个性化排序任务。
个性化排序的三大方法
针对隐式反馈场景,现代推荐系统发展出三类主要的排序优化方法:
1. 逐点方法(Pointwise)
- 每次考虑单个交互
- 训练分类器或回归器预测个体偏好
- 代表方法:矩阵分解、AutoRec
2. 配对方法(Pairwise)
- 每次考虑一对物品
- 近似该配对的最优排序
- 更符合排序任务本质
- 代表方法:BPR损失、Hinge损失
3. 列表方法(Listwise)
- 直接优化整个物品列表的排序
- 可优化NDCG等排序指标
- 计算复杂度较高
贝叶斯个性化排序(BPR)详解
BPR损失是推荐系统中广泛使用的配对排序损失,源自最大后验估计器。其核心思想是:假设用户对已交互物品的偏好高于所有未观测物品。
数学建模
训练数据由三元组构成,表示用户偏好物品胜过物品。BPR的贝叶斯公式为:
其中表示推荐模型参数,表示用户对所有物品的个性化排序。通过最大后验估计推导出优化准则:
代码实现
D2L项目中提供了基于MXNet的BPR损失实现:
class BPRLoss(gluon.loss.Loss):
def __init__(self, weight=None, batch_axis=0, **kwargs):
super(BPRLoss, self).__init__(weight=None, batch_axis=0, **kwargs)
def forward(self, positive, negative):
distances = positive - negative
loss = - np.sum(np.log(npx.sigmoid(distances)), 0, keepdims=True)
return loss
实现要点:
- 计算正样本和负样本的得分差
- 通过sigmoid函数转换为概率
- 取对数后求和作为最终损失
铰链损失(Hinge Loss)变体
推荐系统中使用的铰链损失与分类任务中的标准铰链损失有所不同,其形式为:
其中为安全边际大小,目的是将负样本推离正样本。
代码实现
class HingeLossbRec(gluon.loss.Loss):
def __init__(self, weight=None, batch_axis=0, **kwargs):
super(HingeLossbRec, self).__init__(weight=None, batch_axis=0, **kwargs)
def forward(self, positive, negative, margin=1):
distances = positive - negative
loss = np.sum(np.maximum(- distances + margin, 0))
return loss
实现特点:
- 计算正负样本得分差
- 应用边际约束
- 只惩罚不满足边际条件的样本
技术选型建议
- BPR损失更适合希望概率化解释的场景
- Hinge损失在需要明确边际控制时表现更好
- 两种方法都优于逐点方法,计算复杂度低于列表方法
扩展思考
- 如何调整BPR中的sigmoid函数来改善性能?
- 安全边际的大小如何影响Hinge损失的效果?
- 能否结合两种损失函数的优点设计新的优化目标?
D2L项目通过对这些基础排序技术的清晰讲解和实现,为推荐系统领域的学习者提供了宝贵的实践指导。理解这些排序损失函数的原理和实现,是构建高效推荐系统的重要基础。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0286Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
161
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
16

React Native鸿蒙化仓库
C++
198
279

基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
949
556

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
96
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
346
1.33 K