OpenRLHF项目中处理DeepSeek-R1-Distill-Qwen-7B模型输出特殊标记问题
在OpenRLHF项目中使用DeepSeek-R1-Distill-Qwen-7B模型进行推理时,开发者遇到了一个常见但值得注意的问题:模型输出中包含了特殊标记<\uff5cend\u2581of\u2581sentence\uff5c>,且通过常规的skip_special_tokens参数无法有效去除。
问题现象
当使用vllm 0.8.3进行推理时,即使设置了skip_special_tokens=True参数,模型生成的文本末尾仍然会保留<\uff5cend\u2581of\u2581sentence\uff5c>这样的特殊标记。这在实际应用中会影响用户体验和后续文本处理流程。
技术分析
这个问题源于tokenizer处理方式的差异。虽然vllm的SamplingParams中提供了skip_special_tokens选项,但在某些情况下,特别是对于自定义的特殊标记,可能无法完全识别和过滤。
解决方案
通过深入分析OpenRLHF项目代码,发现更有效的处理方式是在tokenizer的decode阶段直接设置skip_special_tokens=True:
queries = self.tokenizer.batch_decode(sequences_list, skip_special_tokens=True)
这种方法相比在SamplingParams中设置更为直接和可靠,因为它作用于tokenizer本身的解码过程,能够更彻底地过滤掉各类特殊标记。
最佳实践建议
-
双重保障:既在SamplingParams中设置
skip_special_tokens=True,也在tokenizer.decode阶段设置,确保万无一失 -
自定义标记处理:如果项目中有自定义的特殊标记,建议在tokenizer配置中明确定义这些标记的特殊性
-
版本兼容性检查:不同版本的vllm对特殊标记的处理可能有所差异,升级时需注意测试相关功能
-
后处理检查:在关键应用中,建议添加后处理步骤检查并移除可能的残留特殊标记
这个问题虽然看似简单,但反映了在实际部署大型语言模型时需要注意的细节。正确处理特殊标记不仅能提升用户体验,也是保证下游应用稳定运行的重要环节。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00