OpenRLHF项目中处理DeepSeek-R1-Distill-Qwen-7B模型输出特殊标记问题
在OpenRLHF项目中使用DeepSeek-R1-Distill-Qwen-7B模型进行推理时,开发者遇到了一个常见但值得注意的问题:模型输出中包含了特殊标记<\uff5cend\u2581of\u2581sentence\uff5c>,且通过常规的skip_special_tokens参数无法有效去除。
问题现象
当使用vllm 0.8.3进行推理时,即使设置了skip_special_tokens=True参数,模型生成的文本末尾仍然会保留<\uff5cend\u2581of\u2581sentence\uff5c>这样的特殊标记。这在实际应用中会影响用户体验和后续文本处理流程。
技术分析
这个问题源于tokenizer处理方式的差异。虽然vllm的SamplingParams中提供了skip_special_tokens选项,但在某些情况下,特别是对于自定义的特殊标记,可能无法完全识别和过滤。
解决方案
通过深入分析OpenRLHF项目代码,发现更有效的处理方式是在tokenizer的decode阶段直接设置skip_special_tokens=True:
queries = self.tokenizer.batch_decode(sequences_list, skip_special_tokens=True)
这种方法相比在SamplingParams中设置更为直接和可靠,因为它作用于tokenizer本身的解码过程,能够更彻底地过滤掉各类特殊标记。
最佳实践建议
-
双重保障:既在SamplingParams中设置
skip_special_tokens=True,也在tokenizer.decode阶段设置,确保万无一失 -
自定义标记处理:如果项目中有自定义的特殊标记,建议在tokenizer配置中明确定义这些标记的特殊性
-
版本兼容性检查:不同版本的vllm对特殊标记的处理可能有所差异,升级时需注意测试相关功能
-
后处理检查:在关键应用中,建议添加后处理步骤检查并移除可能的残留特殊标记
这个问题虽然看似简单,但反映了在实际部署大型语言模型时需要注意的细节。正确处理特殊标记不仅能提升用户体验,也是保证下游应用稳定运行的重要环节。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00