Flask与Celery集成技术文档
2024-12-20 11:52:21作者:虞亚竹Luna
1. 安装指南
1.1 安装Flask
首先,确保你已经安装了Flask。你可以使用以下命令通过pip安装Flask:
pip install flask
1.2 安装Celery
接下来,安装Celery。你可以使用以下命令通过pip安装Celery:
pip install celery
1.3 安装消息代理
Celery需要一个消息代理来发送和接收消息。常用的消息代理有RabbitMQ和Redis。以下是安装RabbitMQ的示例:
安装RabbitMQ
在Ubuntu或Debian系统上,可以使用以下命令安装RabbitMQ:
sudo apt-get install rabbitmq-server
如果你使用Docker,可以使用以下命令运行RabbitMQ容器:
docker run -d -p 5672:5672 rabbitmq
2. 项目的使用说明
2.1 创建Flask应用
首先,创建一个Flask应用。以下是一个简单的Flask应用示例:
from flask import Flask
app = Flask(__name__)
@app.route('/')
def hello_world():
return 'Hello, World!'
2.2 集成Celery
在Flask应用中集成Celery。以下是一个简单的集成示例:
from celery import Celery
celery = Celery('myapp', broker='amqp://guest@localhost//')
@celery.task
def add(x, y):
return x + y
2.3 启动Celery Worker
启动Celery Worker以处理任务。你可以使用以下命令启动Worker:
celery -A myapp:celery worker -l info
2.4 使用Flask配置Celery
你可以将Flask的配置作为Celery的配置源。以下是一个示例:
celery = Celery('myapp')
celery.conf.add_defaults(app.config)
2.5 在任务中访问Flask请求上下文
如果你需要在任务中访问Flask的请求上下文,可以使用测试上下文:
from flask import Flask
from celery import Celery
app = Flask('myapp')
celery = Celery('myapp')
celery.conf.add_defaults(app.config)
@celery.task
def hello():
with app.test_request_context() as request:
print('Hello {0!r}'.format(request))
3. 项目API使用文档
3.1 Celery任务定义
在Celery中定义任务非常简单。你可以使用@celery.task装饰器来定义任务。以下是一个示例:
@celery.task
def add(x, y):
return x + y
3.2 调用任务
你可以使用delay()方法来异步调用任务:
result = add.delay(4, 4)
3.3 获取任务结果
调用任务后,你可以使用AsyncResult实例来获取任务的结果:
result = add.delay(4, 4)
print(result.get()) # 输出: 8
3.4 检查任务状态
你可以使用ready()方法来检查任务是否已完成:
result = add.delay(4, 4)
print(result.ready()) # 输出: True 或 False
4. 项目安装方式
4.1 通过pip安装
你可以使用pip来安装Flask和Celery:
pip install flask celery
4.2 手动安装
你也可以手动下载并安装Flask和Celery的源码包,然后通过以下命令进行安装:
python setup.py install
4.3 安装消息代理
根据你的需求选择合适的消息代理(如RabbitMQ或Redis),并按照相应的安装指南进行安装。
通过以上步骤,你应该能够成功安装并使用Flask与Celery的集成项目。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
5分钟掌握ImageSharp色彩矩阵变换:图像色调调整的终极指南3分钟解决Cursor试用限制:go-cursor-help工具全攻略Transmission数据库迁移工具:转移种子状态到新设备如何在VMware上安装macOS?解锁神器Unlocker完整使用指南如何为so-vits-svc项目贡献代码:从提交Issue到创建PR的完整指南Label Studio数据处理管道设计:ETL流程与标注前预处理终极指南突破拖拽限制:React Draggable社区扩展与实战指南如何快速安装 JSON Formatter:让 JSON 数据阅读更轻松的终极指南Element UI表格数据地图:Table地理数据可视化Formily DevTools:让表单开发调试效率提升10倍的神器
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
528
3.73 K
Ascend Extension for PyTorch
Python
336
401
暂无简介
Dart
768
191
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
883
590
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
172
React Native鸿蒙化仓库
JavaScript
302
353
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
750
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
246