DeepKE项目中Lora微调Baichuan模型的信息抽取实践
模型加载问题分析
在DeepKE项目中使用Lora微调Baichuan模型进行信息抽取任务时,开发者可能会遇到模型加载配置问题。当尝试加载预训练的baichuan2-13b-iepile-lora模型时,系统提示缺少config.json配置文件。这实际上是模型路径配置不当导致的常见问题。
正确的做法是:model_name_or_path参数应该指向底座模型Baichuan2-13B-Chat,而不是直接指向Lora适配器。Lora适配器的路径应通过checkpoint_dir参数指定。这种设计是因为Lora微调是在基础模型上添加小型适配层,而非创建完整的新模型。
量化配置冲突解决
在调整模型路径后,开发者可能会遇到另一个典型错误:量化配置冲突。系统提示不能同时传递load_in_4bit/load_in_8bit和quantization_config参数。这是因为在模型量化配置中存在重复设置。
解决此问题需要确保开发环境与项目要求一致。DeepKE项目推荐使用以下版本组合:
- accelerate 0.21.0
- transformers 4.33.0
- bitsandbytes 0.39.1
信息抽取模型评估实践
对于信息抽取任务的评估,项目提供了标准化的评估流程:
-
数据准备阶段需要按照特定格式组织测试文件,包括样本数据和模式信息。测试数据应包含id、instruction和label三个关键字段。
-
数据转换阶段使用专用脚本将原始样本转换为模型可接受的输入格式。转换过程需要考虑任务类型(如NER)、语言类型和测试集划分等因素。
-
模型预测阶段将处理后的测试数据输入模型,获取模型输出的预测结果。
-
评估阶段通过专用评估脚本计算F1分数等关键指标。评估过程会统计预测实体数(pred_num)和标注实体数(gold_num),并基于这些基础数据计算精确率、召回率和F1值。
评估指标解析
在命名实体识别(NER)任务中,评估指标基于以下概念:
- 真正例(TP):模型正确识别的实体
- 假正例(FP):模型错误识别的非实体
- 假负例(FN):模型未能识别的实际实体
评估脚本会计算精确率(Precision=TP/(TP+FP))、召回率(Recall=TP/(TP+FN)),并最终得出F1分数(2PrecisionRecall/(Precision+Recall))作为模型性能的综合评价指标。
通过这套标准化的训练、预测和评估流程,开发者可以系统性地评估信息抽取模型的性能,并针对性地进行优化调整。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00