DeepKE-LLM项目中使用量化模型降低显存占用的技术方案
2025-06-17 01:57:54作者:伍霜盼Ellen
项目背景
DeepKE-LLM是一个基于大语言模型的知识抽取工具,该项目整合了当前先进的大模型技术来实现高效的知识抽取功能。然而,大语言模型通常需要较高的显存资源,这对许多开发者构成了硬件门槛。
量化技术概述
量化是一种通过降低模型参数精度来减少显存占用的有效方法。在DeepKE-LLM项目中,可以采用4位量化(4bit)技术,将原始模型参数从32位浮点数压缩到4位整数表示,理论上可减少约8倍的显存需求。
具体实现方案
对于DeepKE-LLM项目,推荐采用以下配置实现量化运行:
-
基础模型选择:建议使用Baichuan2-13B-Chat作为基础大模型,这是一个性能优异的中文大语言模型。
-
量化配置:通过BitsAndBytes库实现4位量化,具体配置参数包括:
- 启用4位加载(load_in_4bit=True)
- 设置计算数据类型为bfloat16
- 使用双重量化(bnb_4bit_use_double_quant=True)
- 采用NF4量化类型(bnb_4bit_quant_type="nf4")
-
适配器模型:配合使用专门为信息抽取任务优化的LoRA适配器,可进一步提升任务性能。
显存需求分析
经过4位量化后,13B参数的大模型显存占用可降至约16GB左右。对于显存更小的设备(如12GB显存),可以考虑以下优化措施:
- 尝试更激进的量化策略
- 使用模型并行技术
- 采用梯度检查点技术
- 优化批次大小
实施建议
在实际部署时,开发者应当注意:
- 量化会带来一定的性能损失,需在效率和精度间权衡
- 不同量化配置可能影响模型稳定性
- 建议在开发环境先进行小规模测试
- 监控显存使用情况和模型输出质量
通过合理配置量化参数,DeepKE-LLM项目可以在保持较好性能的同时,显著降低硬件门槛,使更多开发者能够体验大语言模型在知识抽取任务中的强大能力。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355