在NuScenes-devkit中创建自定义数据集子集的方法
2025-07-01 00:31:04作者:舒璇辛Bertina
背景介绍
NuScenes数据集作为自动驾驶领域的重要基准数据集,其完整版本体积庞大,对存储和计算资源要求较高。在实际研究和开发过程中,研究人员经常需要创建自定义的数据子集来满足特定需求,例如硬件资源有限时的模型验证或快速原型开发。
创建自定义子集的必要性
使用完整NuScenes数据集进行模型训练和评估存在几个挑战:
- 存储空间需求大,完整数据集下载耗时
- 训练周期长,不利于快速迭代
- 计算资源要求高,特别是在使用低端显卡时
虽然官方提供了mini数据集,但仅包含10个场景,可能无法充分验证模型性能。因此,创建中等规模的自定义子集成为折中方案。
技术实现方案
方法一:随机采样现有分割
通过NuScenes开发工具包中的splits模块,可以方便地对现有数据集分割进行二次采样:
from nuscenes.utils import splits
import random
# 获取原始分割
train_scenes = splits.train
val_scenes = splits.val
# 随机采样1/10的数据
num_train_scenes = len(train_scenes)
train_scenes = random.sample(train_scenes, num_train_scenes // 10)
num_val_scenes = len(val_scenes)
val_scenes = random.sample(val_scenes, num_val_scenes // 10)
这种方法保持了原始数据分布,实现简单,适合快速创建中等规模子集。
方法二:自定义分割文件
对于更精细的控制,可以创建自定义的splits.json文件:
- 选择感兴趣的特定场景或样本
- 按照NuScenes格式创建分割文件
- 使用get_scenes_of_custom_split函数加载自定义分割
这种方法适合需要特定数据组合的研究场景,如针对特定天气或交通状况的测试。
实际应用建议
在集成到现有项目(如UniAD)时,需要注意:
- 保持与原始数据相同的目录结构
- 确保数据加载器能够识别自定义分割
- 验证数据子集是否保持了原始数据的关键特性
对于训练流程,建议:
- 使用较小学习率
- 增加数据增强
- 监控验证集性能,防止过拟合
注意事项
创建自定义子集时需要考虑:
- 数据分布的平衡性
- 场景多样性
- 关键帧的覆盖率
- 与完整数据集评估结果的可比性
通过合理设计自定义子集,可以在资源有限的情况下有效开展自动驾驶算法研究和开发。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0305- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
178
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
866
513

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
265
305

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
598
57

基于可以运行在OpenHarmony的git,提供git客户端操作能力
ArkTS
10
3