ModelContextProtocol C SDK:处理复杂对象参数的最佳实践
引言
在使用ModelContextProtocol(MCP)C# SDK开发AI工具时,开发人员经常会遇到需要传递复杂对象作为参数的情况。本文将通过一个实际案例,深入分析如何在MCP工具方法中正确接收和处理复杂对象参数,避免常见的陷阱。
问题背景
在开发基于MCP的AI工具时,我们通常会定义一些服务方法供AI模型调用。这些方法可以接收基本类型参数,也可以接收自定义的复杂对象。然而,当尝试传递复杂对象时,可能会遇到AI客户端(如Copilot Studio)无法正确识别和构造参数对象的问题。
典型错误示例
考虑以下代码示例,其中定义了一个AzureCommunicationServices工具类,包含一个接收PersonToCall复杂对象的方法:
[McpServerToolType]
public class AzureCommunicationServices
{
[McpServerTool, Description("Makes a phone call to the user.")]
public static Task CallUser(PersonToCall person)
{
Console.WriteLine($"Calling the user {person.name}");
return Task.CompletedTask;
}
}
public class PersonToCall
{
public required string? phoneNumber { get; set; }
public required string? name { get; set; }
public required string? greeting { get; set; }
}
这种情况下,Copilot Studio等AI客户端可能会混淆参数名称和对象结构,导致无法正确构造调用参数。
问题根源分析
经过深入调查,发现问题主要出在复杂对象的属性定义上。具体表现为:
-
可空类型问题:属性使用了
string?可空类型声明,同时标记为required,这种组合会导致AI客户端在构造对象时产生困惑。 -
模式识别困难:AI客户端虽然能获取到MCP生成的JSON Schema,但对于某些复杂的类型组合理解不够准确。
解决方案
方案一:简化对象定义
最直接的解决方案是修改复杂对象的属性定义,避免使用required和可空类型的组合:
public class PersonToCall
{
public string phoneNumber { get; set; } = string.Empty;
public string name { get; set; } = string.Empty;
public string greeting { get; set; } = string.Empty;
}
方案二:使用基本类型参数
如果AI客户端对复杂对象支持不佳,可以考虑将方法参数拆分为基本类型:
[McpServerTool, Description("Makes a phone call to the user.")]
public static Task CallUser(string name, string greeting, string phonenumber)
{
Console.WriteLine($"Calling the user {name}");
return Task.CompletedTask;
}
最佳实践
-
属性定义原则:
- 避免同时使用
required和可空类型 - 为属性提供合理的默认值
- 保持属性类型简单明确
- 避免同时使用
-
工具方法设计:
- 对于简单场景,优先使用基本类型参数
- 对于复杂数据结构,确保对象定义清晰明确
- 在文档中添加清晰的参数说明
-
调试技巧:
- 使用MCP Inspector验证工具方法的可用性
- 检查AI客户端接收到的JSON Schema
- 逐步构建复杂对象,验证每个属性的识别情况
结论
在ModelContextProtocol C# SDK中处理复杂对象参数时,关键在于保持对象定义的简洁性和一致性。通过遵循上述最佳实践,开发人员可以确保AI客户端能够正确识别和构造复杂参数对象,从而实现更强大的工具功能。记住,AI系统对代码模式的识别能力有限,因此简单明确的定义往往能带来最好的兼容性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00