ONNX项目中TreeEnsemble算子的编码优化与功能增强
背景与现状
ONNX作为开放的神经网络交换格式,其TreeEnsemble系列算子(包括TreeEnsembleClassifier和TreeEnsembleRegressor)长期以来存在一些编码限制和效率问题。当前实现主要面临三个核心挑战:
-
集合成员关系表达能力不足:现有算子无法直接表示集合成员关系(SET_MEMBERSHIP)这一常见操作,特别是在处理类别型变量时。上游框架如LightGBM经常产生这类操作,而当前转换器只能通过串联相等比较来模拟,导致计算图结构复杂化。
-
编码冗余问题:现有实现包含多个冗余属性,如node_hitrates和nodes_missing_value_tracks_true等,这些属性要么未被实际使用,要么可以通过更简洁的方式表达。
-
精度支持局限:当前算子仅支持32位浮点输出,与主流机器学习框架如XGBoost和LightGBM的双精度支持不匹配,导致数值精度差异。
技术改进方案
集合成员关系支持
新增SET_MEMBERSHIP节点类型,通过专用属性存储可能的成员集合。这种直接编码方式相比当前通过多个EQ节点串联的实现具有明显优势:
- 减少计算图复杂度
- 提高运行时效率
- 增强模型可解释性
- 确保不同框架间转换一致性
编码优化
针对冗余属性进行精简:
-
移除未使用属性:node_hitrates和node_hitrates_as_tensor等未被实际使用的属性将被移除,简化算子定义。
-
简化节点模式:将节点模式缩减为核心正交集(BRANCH_LEQ、BRANCH_LT、BRANCH_EQ和LEAF),保持表达能力的同时提高实现效率。
-
优化缺失值处理:nodes_missing_value_tracks_true属性可通过分支重排实现相同语义,减少运行时分支判断开销。
双精度支持扩展
新增对64位浮点输出的支持,解决与上游框架的数值精度差异问题。这一改进将:
- 确保数值计算一致性
- 满足高精度应用场景需求
- 保持向后兼容性
架构演进建议
基于对现有算子的分析,提出更根本性的架构改进:
-
统一算子设计:将TreeEnsembleClassifier和TreeEnsembleRegressor合并为单一TreeEnsemble算子,通过后续标准操作实现分类功能。这种设计具有以下优势:
- 减少算子维护成本
- 提高组合灵活性
- 简化运行时实现
-
标签编码外置:将classlabels_strings等属性移除,改为通过LabelEncoder等标准操作实现,增强模型模块化。
-
多目标输出优化:支持向量化叶节点输出,避免为多目标场景复制整个树结构,提高模型紧凑性。
实现考量与性能影响
这些改进需要平衡表达力与性能:
-
运行时优化:分支模式简化和冗余属性移除可直接提升推理速度,特别是在大规模树集成场景。
-
内存效率:更紧凑的编码格式减少模型体积,改善加载和缓存效率。
-
转换器兼容性:通过渐进式改进路径(如先引入新算子再弃用旧版)确保生态平稳过渡。
未来展望
本次TreeEnsemble算子的改进为ONNX在传统机器学习领域的持续优化奠定了基础。类似的设计理念可扩展至其他算子(如LinearClassifier/SVM等),推动ONNX成为更统一高效的模型交换标准。
随着多目标学习和高精度计算需求的增长,ONNX在保持性能的同时增强表达力的努力,将使其在工业部署和学术研究中发挥更大价值。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00