4K4D项目训练中的渲染质量问题分析与解决方案
2025-07-09 04:37:01作者:蔡丛锟
问题现象
在使用4K4D项目训练NHR数据集中的篮球场景时,研究人员遇到了渲染质量不佳的问题。具体表现为:
- 人体上的点云颗粒感明显且噪声较大
- 存在大量离群点散布在人体区域外
- 评估指标显示PSNR为30.55,SSIM为0.96,LPIPS为0.106,虽然数值尚可但视觉效果不理想
问题诊断
通过TensorBoard检查训练日志发现,该场景训练过程中出现了明显的损失值波动和上升趋势,特别是mask损失(msk_loss)表现异常。这与正常训练场景(如4k4d_0013_01样本)形成鲜明对比,后者训练过程平稳且渲染效果良好。
根本原因
问题源于4K4D项目中使用的光栅化器在某些特定场景下的不稳定性。篮球场景由于运动幅度大、遮挡复杂等特点,更容易引发这种不稳定性,导致训练过程中损失值异常波动,最终影响渲染质量。
解决方案
项目团队提供了两种解决方案:
- 启用CUDA光栅化器:通过设置
render_gs=True参数,使用更稳定的CUDA-based光栅化器。具体命令如下:
evc-train -c configs/exps/4k4d/4k4d_basketball_r4.yaml model_cfg.sampler_cfg.render_gs=True
- 相机参数优化:对于更复杂的场景,可以进一步优化相机参数:
- 使用项目提供的脚本导出优化后的相机参数
- 在配置文件中通过
dataloader_cfg.dataset_cfg.intri_file和extri_file指定优化后的相机参数 - 对验证数据集(val_dataloader)进行同样的设置
实施效果
启用CUDA光栅化器后:
- 训练过程变得稳定,损失曲线恢复正常
- 渲染质量显著提升,消除了颗粒感和离群点问题
- 视觉效果与评估指标更加匹配
最佳实践建议
- 对于动态性强、遮挡复杂的场景,建议默认启用
render_gs=True参数 - 训练过程中应定期检查TensorBoard日志,关注损失曲线变化
- 对于特殊场景,可考虑结合相机参数优化进一步提升效果
- 当遇到渲染完全透明的情况时,可能是光栅化器参数设置不当,建议检查配置并参考项目文档
通过以上措施,研究人员可以有效地解决4K4D项目在复杂场景下的渲染质量问题,获得更优的视觉效果。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C089
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.51 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
220
88
暂无简介
Dart
721
174
Ascend Extension for PyTorch
Python
281
315
React Native鸿蒙化仓库
JavaScript
286
335
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
436
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
698
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19