OpenAI Agents Python SDK中的短期内存支持设计与实现思考
2025-05-25 02:45:51作者:滕妙奇
在构建基于LLM的智能代理系统时,短期内存(Short-term Memory)机制是一个关键的技术考量点。本文将以OpenAI Agents Python SDK项目为例,深入探讨这一功能的设计思路和实现方案。
短期内存的核心需求
短期内存在智能代理系统中主要服务于两个核心场景:
- 工具输出缓存:当代理调用外部工具或API时,对返回结果进行临时存储以避免重复计算
- 用户请求缓存:对相似的用户查询进行响应缓存,提升系统响应速度
这种内存机制不同于长期记忆(如向量数据库存储),其特点是生命周期短、访问频率高、数据量相对较小。
技术实现考量
服务端缓存方案
对于工具输出的缓存,建议采用服务端实现方案:
- 在API网关层或专用缓存服务中实现
- 使用Redis等内存数据库存储高频访问数据
- 设置合理的TTL(Time-To-Live)策略
- 考虑基于请求特征的哈希键设计
这种架构的优势在于:
- 避免每个客户端重复实现缓存逻辑
- 便于集中管理和监控缓存命中率
- 可以实施统一的缓存失效策略
LLM调用缓存的特殊考量
对于LLM调用的缓存需要特别注意:
- 输入变异性问题:即使语义相似的查询,在具体表述上(如措辞、错别字等)可能存在差异,导致缓存命中率低下
- 上下文依赖性:相同的查询在不同会话历史或个性化上下文中可能需要不同响应
- 工具动态性:代理可用的工具集变化会影响响应结果
可行的实现方案
虽然官方不建议常规缓存LLM调用,但在特定场景下可通过以下方式实现:
from functools import cache
from openai import Model
class CachedModel(Model):
@cache
def generate(self, prompt, **kwargs):
return super().generate(prompt, **kwargs)
这种装饰器模式实现了:
- 基于Python内置LRU缓存机制
- 自动处理相同输入的缓存返回
- 保持原有API接口不变
架构建议
对于生产级系统,建议采用分层缓存策略:
- 请求预处理层:对用户输入进行标准化处理(如拼写纠正、同义词替换)
- 语义缓存层:基于嵌入向量相似度实现语义级缓存
- 精确匹配层:对完全相同的请求直接返回缓存
这种组合方案能在保证响应质量的同时,显著提升系统性能。
总结
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
650
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
296
111
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.69 K
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
66
96
暂无简介
Dart
633
143