OpenAI Agents Python SDK中的短期内存支持设计与实现思考
2025-05-25 11:01:46作者:滕妙奇
在构建基于LLM的智能代理系统时,短期内存(Short-term Memory)机制是一个关键的技术考量点。本文将以OpenAI Agents Python SDK项目为例,深入探讨这一功能的设计思路和实现方案。
短期内存的核心需求
短期内存在智能代理系统中主要服务于两个核心场景:
- 工具输出缓存:当代理调用外部工具或API时,对返回结果进行临时存储以避免重复计算
- 用户请求缓存:对相似的用户查询进行响应缓存,提升系统响应速度
这种内存机制不同于长期记忆(如向量数据库存储),其特点是生命周期短、访问频率高、数据量相对较小。
技术实现考量
服务端缓存方案
对于工具输出的缓存,建议采用服务端实现方案:
- 在API网关层或专用缓存服务中实现
- 使用Redis等内存数据库存储高频访问数据
- 设置合理的TTL(Time-To-Live)策略
- 考虑基于请求特征的哈希键设计
这种架构的优势在于:
- 避免每个客户端重复实现缓存逻辑
- 便于集中管理和监控缓存命中率
- 可以实施统一的缓存失效策略
LLM调用缓存的特殊考量
对于LLM调用的缓存需要特别注意:
- 输入变异性问题:即使语义相似的查询,在具体表述上(如措辞、错别字等)可能存在差异,导致缓存命中率低下
- 上下文依赖性:相同的查询在不同会话历史或个性化上下文中可能需要不同响应
- 工具动态性:代理可用的工具集变化会影响响应结果
可行的实现方案
虽然官方不建议常规缓存LLM调用,但在特定场景下可通过以下方式实现:
from functools import cache
from openai import Model
class CachedModel(Model):
@cache
def generate(self, prompt, **kwargs):
return super().generate(prompt, **kwargs)
这种装饰器模式实现了:
- 基于Python内置LRU缓存机制
- 自动处理相同输入的缓存返回
- 保持原有API接口不变
架构建议
对于生产级系统,建议采用分层缓存策略:
- 请求预处理层:对用户输入进行标准化处理(如拼写纠正、同义词替换)
- 语义缓存层:基于嵌入向量相似度实现语义级缓存
- 精确匹配层:对完全相同的请求直接返回缓存
这种组合方案能在保证响应质量的同时,显著提升系统性能。
总结
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

React Native鸿蒙化仓库
JavaScript
212
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
527
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

ArkUI-X adaptation to Android | ArkUI-X支持Android平台的适配层
C++
39
55

ArkUI-X adaptation to iOS | ArkUI-X支持iOS平台的适配层
Objective-C++
19
44