pgvectorscale项目新增内积距离支持的技术解析
在向量数据库领域,距离计算方式是核心功能之一。timescale/pgvectorscale作为PostgreSQL的向量扩展,近期社区讨论并实现了对向量内积距离计算的支持,这是对现有余弦相似度功能的重要补充。
背景与需求
向量相似性搜索通常需要计算向量之间的距离或相似度。pgvectorscale原本仅支持余弦相似度计算,但实际应用中,内积(inner product)也是一种常见且重要的距离度量方式。内积计算在数学上表示为两个向量的点积,即对应元素相乘后求和。
开发者提出该需求的背景主要有两方面:首先,像OpenAI这样的主流嵌入模型会对输出向量进行归一化处理,此时内积计算在效果上与余弦相似度等价但计算效率更高;其次,对于某些特定模型(如BgeM3)生成的稀疏向量,内积计算能更直观地反映token级别的匹配情况。
技术实现要点
在技术实现层面,需要注意几个关键点:
-
归一化处理的一致性:pgvectorscale在存储时已经对向量进行了归一化处理,这意味着内积和余弦相似度在数学表达上可以相互转换。归一化后的向量内积实际上等同于余弦相似度,因为cosθ = (a·b)/(|a||b|),当|a|=|b|=1时,cosθ = a·b。
-
性能考量:虽然理论上内积计算可能更快,但由于现有实现已经包含归一化步骤,实际性能差异可能不明显。这需要在具体实现中进行基准测试验证。
-
稀疏向量支持:虽然内积计算对稀疏向量处理有优势,但完整的稀疏向量支持需要单独实现,包括存储格式、索引结构等方面的特殊处理。
应用场景分析
内积距离支持将扩展pgvectorscale的应用场景:
-
归一化嵌入的高效查询:对于已经归一化的嵌入向量(如OpenAI模型输出),直接使用内积可以避免冗余计算。
-
语义搜索优化:在某些语义搜索场景中,内积可能比余弦相似度更能反映特定业务需求的相关性评分。
-
混合检索系统:为构建同时包含稠密向量和稀疏向量的混合检索系统奠定基础。
未来发展方向
虽然已经实现了基本的内积距离支持,但仍有一些优化方向:
-
针对特定硬件优化内积计算的指令集实现
-
为稀疏向量设计专门的存储和计算路径
-
探索内积距离在近似最近邻搜索(ANN)算法中的特殊优化
这一功能的加入使pgvectorscale在向量相似性计算方面更加全面,为开发者提供了更多选择空间,同时也保持了与主流嵌入模型的兼容性。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00