MTEB评测中GritLM-7b模型STS22任务得分异常分析
在embeddings-benchmark/mteb项目的评测过程中,发现GritLM-7b模型在STS22.v1任务上的得分为NaN(非数字),这一异常情况引起了开发团队的关注。经过技术分析,我们找到了问题的根源并制定了解决方案。
问题背景
STS22(Semantic Textual Similarity 2022)是多语言语义相似度评测任务,要求模型能够准确评估不同语言文本之间的语义相似程度。在标准评测流程中,GritLM-7b模型在该任务上的得分显示为NaN,这显然不符合预期。
原因分析
经过深入排查,发现问题源于以下技术细节:
-
多语言支持不完整:GritLM-7b模型当前仅支持英语单语种处理,而STS22是多语言评测任务。当模型遇到非英语文本时,无法生成有效输出,导致最终得分为NaN。
-
评测版本差异:项目使用了新版本的MTEB评测框架重新运行测试,但新版本测试结果中只保留了多语言评测文件,而英语单语种的结果保存在另一个文件中。
解决方案
针对这一问题,技术团队制定了以下解决方案:
-
数据合并方案:将英语单语种的评测结果手动合并到新版本的多语言评测文件中。这种方法虽然需要人工干预,但能保证评测结果的完整性。
-
模型改进建议:长期来看,建议模型开发者扩展GritLM-7b的多语言处理能力,使其能够真正支持STS22等多语言评测任务。
技术启示
这一案例给我们带来以下技术启示:
-
评测完整性:在进行模型评测时,需要确保评测任务与模型能力的匹配性。单语种模型参与多语言任务评测可能导致结果异常。
-
版本兼容性:评测框架的版本更新可能影响结果文件的组织方式,需要特别注意新旧版本间的数据迁移问题。
-
异常处理机制:建议在评测系统中增加对NaN等异常值的检测机制,及时发现并处理类似问题。
通过这次问题的分析和解决,项目团队对模型评测过程中的各种边界情况有了更深入的理解,为后续的评测工作积累了宝贵经验。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00