MTEB中文基准测试结果缺失问题分析与解决方案
2025-07-01 01:10:08作者:裘旻烁
问题背景
MTEB(Massive Text Embedding Benchmark)中文基准测试(C-MTEB)在结果展示过程中出现了大量结果缺失的情况。经过深入调查,发现问题并非简单的数据分割缺失导致,而是与结果加载机制和数据结构变更有关。
核心问题分析
1. 主评分字段缺失问题
在检查intfloat/multilingual-e5-small
模型的Cmnli
任务结果时发现,结果文件中缺少main_score
字段。该字段是结果加载的关键依据,因为MTEB在加载结果时默认只加载主评分(only_main_score=True
)以避免内存溢出。
2. 评分结构变更影响
MTEB在历史版本更新中对评分结构进行了调整(#1037),导致新旧版本结果文件结构不一致。例如:
- 旧版使用
max_accuracy
作为主评分 - 新版使用嵌套结构
{"max": {"accuracy": score}}
3. 模型元数据缺失
部分包含旧结果的文件夹缺少model_meta.json
文件,而load_results()
默认要求必须存在模型元数据(require_model_meta=True
),导致这些结果无法加载。
技术细节解析
评分结构差异
对比新旧版本评分结构:
# 旧版结构
{
"max_accuracy": 0.6535,
"max_ap": 0.7212,
"max_f1": 0.7057
}
# 新版结构
{
"max": {
"accuracy": 0.6535,
"ap": 0.7212,
"f1": 0.7057
}
}
结果加载机制
MTEB使用TaskResult.from_disk()
加载结果文件时,会执行以下关键步骤:
- 检查文件完整性
- 提取评分数据
- 根据任务元数据中的
main_score
字段定位关键评分 - 验证评分存在性
解决方案与修复
1. 结果加载逻辑优化
在PR #1801中实现了以下改进:
- 增强对旧版结果文件的兼容性处理
- 优化评分字段匹配逻辑
- 添加缺失模型元数据
2. 基准任务定义修正
针对中文基准测试中的任务:
- 统一使用v1版本的聚类任务(与原始论文一致)
- 修正任务版本标注错误
- 明确指定
MultilingualSentiment
任务应使用测试集而非验证集
3. 评分标准统一
对于Cmnli
和Ocnli
任务:
- 保持使用
max_accuracy
作为主评分标准 - 接受与旧版结果的差异(旧版使用
max_ap
)
影响评估
修复后,模型intfloat/multilingual-e5-small
的结果变化如下:
任务名称 | 旧版结果 | 新版结果 | 差异原因 |
---|---|---|---|
Cmnli | 72.12 | 65.35 | 评分标准从max_ap改为max_accuracy |
Ocnli | 60.77 | 58.69 | 同上 |
MultilingualSentiment | 64.74 | 66.34 | 使用测试集而非验证集 |
STSB | 84.11 | 77.73 | 旧版结果无法验证 |
后续工作
- 补充缺失的模型元数据(#1803)
- 完善中文基准测试的任务定义
- 建立结果文件验证机制
- 编写版本迁移指南
通过本次问题修复,MTEB中文基准测试的结果完整性和准确性得到了显著提升,为后续研究提供了更可靠的数据基础。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp Cafe Menu项目中link元素的void特性解析2 freeCodeCamp全栈开发课程中React实验项目的分类修正3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程中屏幕放大器知识点优化分析5 freeCodeCamp课程页面空白问题的技术分析与解决方案6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
53
468

deepin linux kernel
C
22
5

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
349
381

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

openGauss kernel ~ openGauss is an open source relational database management system
C++
133
186

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
878
517

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
336
1.1 K

React Native鸿蒙化仓库
C++
180
264

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
612
60

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4