MTEB中文基准测试结果缺失问题分析与解决方案
2025-07-01 02:28:51作者:裘旻烁
问题背景
MTEB(Massive Text Embedding Benchmark)中文基准测试(C-MTEB)在结果展示过程中出现了大量结果缺失的情况。经过深入调查,发现问题并非简单的数据分割缺失导致,而是与结果加载机制和数据结构变更有关。
核心问题分析
1. 主评分字段缺失问题
在检查intfloat/multilingual-e5-small模型的Cmnli任务结果时发现,结果文件中缺少main_score字段。该字段是结果加载的关键依据,因为MTEB在加载结果时默认只加载主评分(only_main_score=True)以避免内存溢出。
2. 评分结构变更影响
MTEB在历史版本更新中对评分结构进行了调整(#1037),导致新旧版本结果文件结构不一致。例如:
- 旧版使用
max_accuracy作为主评分 - 新版使用嵌套结构
{"max": {"accuracy": score}}
3. 模型元数据缺失
部分包含旧结果的文件夹缺少model_meta.json文件,而load_results()默认要求必须存在模型元数据(require_model_meta=True),导致这些结果无法加载。
技术细节解析
评分结构差异
对比新旧版本评分结构:
# 旧版结构
{
"max_accuracy": 0.6535,
"max_ap": 0.7212,
"max_f1": 0.7057
}
# 新版结构
{
"max": {
"accuracy": 0.6535,
"ap": 0.7212,
"f1": 0.7057
}
}
结果加载机制
MTEB使用TaskResult.from_disk()加载结果文件时,会执行以下关键步骤:
- 检查文件完整性
- 提取评分数据
- 根据任务元数据中的
main_score字段定位关键评分 - 验证评分存在性
解决方案与修复
1. 结果加载逻辑优化
在PR #1801中实现了以下改进:
- 增强对旧版结果文件的兼容性处理
- 优化评分字段匹配逻辑
- 添加缺失模型元数据
2. 基准任务定义修正
针对中文基准测试中的任务:
- 统一使用v1版本的聚类任务(与原始论文一致)
- 修正任务版本标注错误
- 明确指定
MultilingualSentiment任务应使用测试集而非验证集
3. 评分标准统一
对于Cmnli和Ocnli任务:
- 保持使用
max_accuracy作为主评分标准 - 接受与旧版结果的差异(旧版使用
max_ap)
影响评估
修复后,模型intfloat/multilingual-e5-small的结果变化如下:
| 任务名称 | 旧版结果 | 新版结果 | 差异原因 |
|---|---|---|---|
| Cmnli | 72.12 | 65.35 | 评分标准从max_ap改为max_accuracy |
| Ocnli | 60.77 | 58.69 | 同上 |
| MultilingualSentiment | 64.74 | 66.34 | 使用测试集而非验证集 |
| STSB | 84.11 | 77.73 | 旧版结果无法验证 |
后续工作
- 补充缺失的模型元数据(#1803)
- 完善中文基准测试的任务定义
- 建立结果文件验证机制
- 编写版本迁移指南
通过本次问题修复,MTEB中文基准测试的结果完整性和准确性得到了显著提升,为后续研究提供了更可靠的数据基础。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355