MTEB中文基准测试结果缺失问题分析与解决方案
2025-07-01 10:41:15作者:裘旻烁
问题背景
MTEB(Massive Text Embedding Benchmark)中文基准测试(C-MTEB)在结果展示过程中出现了大量结果缺失的情况。经过深入调查,发现问题并非简单的数据分割缺失导致,而是与结果加载机制和数据结构变更有关。
核心问题分析
1. 主评分字段缺失问题
在检查intfloat/multilingual-e5-small模型的Cmnli任务结果时发现,结果文件中缺少main_score字段。该字段是结果加载的关键依据,因为MTEB在加载结果时默认只加载主评分(only_main_score=True)以避免内存溢出。
2. 评分结构变更影响
MTEB在历史版本更新中对评分结构进行了调整(#1037),导致新旧版本结果文件结构不一致。例如:
- 旧版使用
max_accuracy作为主评分 - 新版使用嵌套结构
{"max": {"accuracy": score}}
3. 模型元数据缺失
部分包含旧结果的文件夹缺少model_meta.json文件,而load_results()默认要求必须存在模型元数据(require_model_meta=True),导致这些结果无法加载。
技术细节解析
评分结构差异
对比新旧版本评分结构:
# 旧版结构
{
"max_accuracy": 0.6535,
"max_ap": 0.7212,
"max_f1": 0.7057
}
# 新版结构
{
"max": {
"accuracy": 0.6535,
"ap": 0.7212,
"f1": 0.7057
}
}
结果加载机制
MTEB使用TaskResult.from_disk()加载结果文件时,会执行以下关键步骤:
- 检查文件完整性
- 提取评分数据
- 根据任务元数据中的
main_score字段定位关键评分 - 验证评分存在性
解决方案与修复
1. 结果加载逻辑优化
在PR #1801中实现了以下改进:
- 增强对旧版结果文件的兼容性处理
- 优化评分字段匹配逻辑
- 添加缺失模型元数据
2. 基准任务定义修正
针对中文基准测试中的任务:
- 统一使用v1版本的聚类任务(与原始论文一致)
- 修正任务版本标注错误
- 明确指定
MultilingualSentiment任务应使用测试集而非验证集
3. 评分标准统一
对于Cmnli和Ocnli任务:
- 保持使用
max_accuracy作为主评分标准 - 接受与旧版结果的差异(旧版使用
max_ap)
影响评估
修复后,模型intfloat/multilingual-e5-small的结果变化如下:
| 任务名称 | 旧版结果 | 新版结果 | 差异原因 |
|---|---|---|---|
| Cmnli | 72.12 | 65.35 | 评分标准从max_ap改为max_accuracy |
| Ocnli | 60.77 | 58.69 | 同上 |
| MultilingualSentiment | 64.74 | 66.34 | 使用测试集而非验证集 |
| STSB | 84.11 | 77.73 | 旧版结果无法验证 |
后续工作
- 补充缺失的模型元数据(#1803)
- 完善中文基准测试的任务定义
- 建立结果文件验证机制
- 编写版本迁移指南
通过本次问题修复,MTEB中文基准测试的结果完整性和准确性得到了显著提升,为后续研究提供了更可靠的数据基础。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
241
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
881