YOLOv5中的边界框回归机制深度解析
2025-05-01 13:22:37作者:劳婵绚Shirley
边界框预测的核心思想
YOLOv5作为目标检测领域的经典算法,其边界框预测机制体现了精妙的设计思想。与传统的直接预测绝对坐标不同,YOLOv5采用相对偏移量的预测方式,这种设计既保证了预测精度,又提高了模型的泛化能力。
网格系统与坐标变换
YOLOv5将输入图像划分为S×S的网格,每个网格负责预测中心点落在该区域内的物体。在特征图处理阶段,算法通过_make_grid()函数生成网格坐标时,会减去0.5进行中心点对齐。这一看似简单的操作实际上将坐标参考点从网格左上角转移到网格中心,使得后续的偏移量计算更加合理。
偏移量预测的数学表达
YOLOv5的边界框中心点预测公式为:
b_x = (2×σ(t_x) - 0.5) + c_x
b_y = (2×σ(t_y) - 0.5) + c_y
其中σ表示sigmoid函数,t_x和t_y是网络原始输出,c_x和c_y是网格坐标。
这个设计的精妙之处在于:
- 通过sigmoid函数将原始输出约束在(0,1)范围内
- 2×σ(t_x)将范围扩展到(0,2)
- 减去0.5后得到(-0.5,1.5)的范围
这种变换允许预测的边界框可以超出当前网格的范围,增强了模型对跨网格物体的检测能力。
训练与推理的差异处理
在训练阶段,YOLOv5主要关注相对偏移量的学习,因此计算损失时不需要加入网格坐标。而在推理阶段,为了得到最终的绝对坐标,需要将预测的偏移量与网格坐标相加。这种差异化的处理既保证了训练过程的稳定性,又确保了推理结果的准确性。
边界约束机制
为了防止预测结果超出图像范围,YOLOv5采用了边界约束(clamping)机制。在将预测结果映射回原图坐标后,算法会对坐标值进行截断处理,确保所有预测框都位于有效图像区域内。这种处理对于边缘网格的预测尤为重要,避免了无效坐标的产生。
设计优势分析
这种边界框回归机制具有以下优势:
- 增强了对大物体的检测能力,允许预测框跨越多个网格
- 提高了对小物体的定位精度,通过精细的偏移量控制
- 保持了算法的简洁性,不需要复杂的后处理
- 适应不同尺度的特征图,具有良好的扩展性
理解这一机制对于深入掌握YOLOv5的工作原理至关重要,也为后续的模型优化和改进提供了理论基础。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210