YOLOv5中的边界框回归机制深度解析
2025-05-01 19:28:52作者:劳婵绚Shirley
边界框预测的核心思想
YOLOv5作为目标检测领域的经典算法,其边界框预测机制体现了精妙的设计思想。与传统的直接预测绝对坐标不同,YOLOv5采用相对偏移量的预测方式,这种设计既保证了预测精度,又提高了模型的泛化能力。
网格系统与坐标变换
YOLOv5将输入图像划分为S×S的网格,每个网格负责预测中心点落在该区域内的物体。在特征图处理阶段,算法通过_make_grid()函数生成网格坐标时,会减去0.5进行中心点对齐。这一看似简单的操作实际上将坐标参考点从网格左上角转移到网格中心,使得后续的偏移量计算更加合理。
偏移量预测的数学表达
YOLOv5的边界框中心点预测公式为:
b_x = (2×σ(t_x) - 0.5) + c_x
b_y = (2×σ(t_y) - 0.5) + c_y
其中σ表示sigmoid函数,t_x和t_y是网络原始输出,c_x和c_y是网格坐标。
这个设计的精妙之处在于:
- 通过sigmoid函数将原始输出约束在(0,1)范围内
- 2×σ(t_x)将范围扩展到(0,2)
- 减去0.5后得到(-0.5,1.5)的范围
这种变换允许预测的边界框可以超出当前网格的范围,增强了模型对跨网格物体的检测能力。
训练与推理的差异处理
在训练阶段,YOLOv5主要关注相对偏移量的学习,因此计算损失时不需要加入网格坐标。而在推理阶段,为了得到最终的绝对坐标,需要将预测的偏移量与网格坐标相加。这种差异化的处理既保证了训练过程的稳定性,又确保了推理结果的准确性。
边界约束机制
为了防止预测结果超出图像范围,YOLOv5采用了边界约束(clamping)机制。在将预测结果映射回原图坐标后,算法会对坐标值进行截断处理,确保所有预测框都位于有效图像区域内。这种处理对于边缘网格的预测尤为重要,避免了无效坐标的产生。
设计优势分析
这种边界框回归机制具有以下优势:
- 增强了对大物体的检测能力,允许预测框跨越多个网格
- 提高了对小物体的定位精度,通过精细的偏移量控制
- 保持了算法的简洁性,不需要复杂的后处理
- 适应不同尺度的特征图,具有良好的扩展性
理解这一机制对于深入掌握YOLOv5的工作原理至关重要,也为后续的模型优化和改进提供了理论基础。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java01
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
519
3.69 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
761
182
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
740
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
301
347
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1