FlashInfer项目中KV缓存非连续存储的技术演进
背景与问题分析
在大型语言模型推理过程中,键值(KV)缓存的管理是一个关键性能瓶颈。FlashInfer项目最初设计KV缓存时采用了分层存储结构,将层数(num_layers)作为KV缓存的第一个维度。这种设计虽然直观,但在实际应用中暴露出了一些性能问题。
传统KV缓存结构通常采用[num_layers, max_num_pages, page_size, num_kv_heads, head_dim]这样的布局。这种设计导致在KV缓存交换(如GPU与CPU之间)时需要进行num_layers * num_pages次内存拷贝操作,当模型层数较多时会产生显著的性能开销。
技术改进方案
经过深入分析,技术团队发现CUDA内核实现实际上并不要求KV缓存必须是连续存储的。这一发现为优化KV缓存管理提供了新的可能性。改进方案的核心思想是将层数维度移入KV缓存页内部,形成[max_num_pages, num_layers, page_size, num_kv_heads, head_dim]等新型布局。
这种非连续存储方案带来两个显著优势:
- 内存拷贝操作次数从num_layers * num_pages减少到num_pages,理论上可提升num_layers倍的交换效率
- 增大了单个页面的内存块大小,使得2MB物理内存块的分配成为可能,无需依赖自定义CUDA驱动
实现细节与验证
实现这一改进的关键在于正确计算KV缓存的跨步(stride)。FlashInfer的代码库中,page.cuh文件定义了页面的跨步计算逻辑。技术团队通过以下步骤完成了验证:
- 为paged_kv_t添加新的构造函数,支持非连续形状的KV缓存
- 逐步放宽各API对KV缓存连续性的检查要求
- 通过基准测试验证各API在非连续情况下的正确性
基准测试结果表明,在page_size=16的情况下,新方案使KV缓存交换速度提升了3倍以上。即使page_size=128时,性能也有明显改善。这种提升主要源于单次内存拷贝大小的增加,而非内核启动次数的减少。
技术影响与未来方向
这一改进不仅提升了性能,还为KV缓存管理带来了更大的灵活性。例如,不同层可以采用不同的KV缓存存储策略,如混合使用全注意力和窗口注意力。这种灵活性为后续的KV缓存压缩等优化技术奠定了基础。
从工程实践角度看,这一改进也凸显了项目基础设施的重要性。团队正在考虑引入pre-commit钩子等工具来规范代码格式,确保贡献质量。同时,详细的贡献指南将帮助更多开发者参与项目,共同推动KV缓存管理技术的进步。
FlashInfer项目的这一技术演进展示了深度学习系统优化中"打破常规思维"的价值。通过深入理解底层硬件特性和算法需求,即使是成熟的设计也能找到新的优化空间。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00