Apache DataFusion 中 sqllogictest 测试失败的本地调试指南
问题背景
在使用 Apache DataFusion 进行开发时,开发者可能会遇到一个常见问题:在本地运行 sqllogictest 测试时出现失败,而这些测试在持续集成(CI)环境中却能顺利通过。这种不一致性给本地开发和调试带来了不便。
问题现象
当开发者在本地执行以下命令时:
cargo test --test sqllogictests
或
cargo test --profile ci --features backtrace --test sqllogictests
测试会失败,并显示类似如下的错误信息:
[SQL] SELECT approx_percentile_cont(0.95, c1) WITHIN GROUP (ORDER BY c3) FROM aggregate_test_100
Error: Execution("1 failures")
根本原因分析
经过深入调查,发现这个问题与错误信息的格式化方式有关。在 CI 环境中,测试会自动设置 RUST_BACKTRACE=1 环境变量,这使得错误信息包含了更详细的堆栈跟踪信息。而在本地运行时,如果没有显式设置这个环境变量,错误信息的格式会有所不同,导致测试断言失败。
具体来说,测试期望的错误信息格式是包含多行详细信息的,但本地运行时产生的错误信息格式较为简洁,因此无法匹配测试的预期结果。
解决方案
开发者可以采用以下两种方法之一来解决这个问题:
- 临时解决方案:在本地运行测试时显式设置 RUST_BACKTRACE 环境变量
 
RUST_BACKTRACE=1 cargo test --profile ci --features backtrace --test sqllogictests
- 永久解决方案:修改测试用例,使其不依赖于 RUST_BACKTRACE 的设置。这需要调整测试中对错误信息的断言,使其能够接受不同格式的错误信息。
 
技术细节
这个问题涉及到 DataFusion 中 approx_percentile_cont 和 approx_percentile_cont_with_weight 函数的类型检查机制。当传入不兼容的类型参数时,系统会生成详细的错误信息,列出所有可接受的函数签名组合。
在测试中,这些错误信息的精确匹配对于验证函数行为非常重要。然而,错误信息的详细程度会受到 RUST_BACKTRACE 设置的影响,这就导致了本地和 CI 环境中的不一致行为。
最佳实践建议
对于 DataFusion 开发者,建议:
- 
在编写测试时,尽量避免对错误信息格式的严格依赖,特别是那些可能受环境变量影响的部分。
 - 
在本地开发环境中,可以设置一致的 RUST_BACKTRACE 配置,或者在 CI 配置中明确指定所需的测试环境。
 - 
对于涉及复杂错误信息验证的测试用例,考虑使用更灵活的匹配方式,如正则表达式或部分字符串匹配,而不是完全匹配。
 
通过理解这个问题及其解决方案,开发者可以更高效地在本地环境中进行 DataFusion 的开发和测试工作,提高开发效率。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00