GLM-4项目中的工具调用功能API接入实践指南
2025-06-03 14:27:11作者:尤辰城Agatha
在GLM-4项目的composite_demo中,工具调用(Function Calling)功能是一个强大的特性,它允许模型在执行过程中调用外部函数或工具来完成特定任务。本文将详细介绍如何将这一功能通过API方式接入前端应用,实现完整的工具调用流程。
服务端架构解析
GLM-4项目中的openai_api_server.py文件实现了一个兼容OpenAI API格式的服务端,这是接入前端的关键组件。该服务端主要包含以下几个核心功能:
- API路由处理:接收标准化的OpenAI API格式请求
- 模型交互层:与GLM-4-9B-Chat模型进行通信
- 工具调用处理器:解析和执行模型返回的工具调用请求
- 响应格式化:将结果封装为OpenAI兼容的响应格式
前端接入方案
要实现前端对工具调用功能的完整接入,需要遵循以下步骤:
1. 服务端配置与启动
首先需要确保服务端正确配置并运行。服务端启动后,会监听特定端口(默认为8000),等待前端请求。
2. 前端请求格式
前端需要按照OpenAI API的标准格式发送请求,特别是当需要使用工具调用功能时,需要在请求中包含tools参数:
{
"model": "glm-4",
"messages": [
{"role": "user", "content": "查询北京的天气"}
],
"tools": [
{
"name": "get_current_weather",
"description": "获取当前天气",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "城市名称"
}
},
"required": ["location"]
}
}
]
}
3. 工具调用流程处理
完整的工具调用流程通常包含以下交互步骤:
- 前端发送初始请求
- 服务端返回工具调用请求
- 前端执行相应工具
- 前端将工具执行结果返回服务端
- 服务端整合结果并返回最终响应
4. 错误处理机制
在实际应用中,需要建立完善的错误处理机制:
- 工具执行超时处理
- 无效参数处理
- 服务不可用时的降级方案
- 结果验证机制
性能优化建议
对于生产环境部署,可以考虑以下优化措施:
- 请求批处理:对于高并发场景,实现请求合并
- 结果缓存:对常见工具调用结果进行缓存
- 连接池管理:优化前后端连接
- 负载均衡:在多实例部署时实现请求分发
安全注意事项
在开放API接口时,必须考虑以下安全因素:
- 实现完善的认证机制(如API Key验证)
- 对工具调用进行权限控制
- 输入参数验证和过滤
- 敏感信息处理
通过以上方案,开发者可以有效地将GLM-4的工具调用功能集成到前端应用中,构建出功能丰富、交互智能的AI应用。实际实施时,建议根据具体业务需求对流程进行适当调整,并做好性能测试和安全评估。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137