首页
/ OpenSearch项目中的Mapping Transformer技术解析

OpenSearch项目中的Mapping Transformer技术解析

2025-05-22 16:38:09作者:裴麒琰

在OpenSearch项目中,近期提出了一个关于Mapping Transformer的技术方案,旨在简化神经搜索(neural search)的设置过程。这项技术将引入一种新的字段类型,并允许用户在索引映射中定义模型ID,从而自动生成与神经搜索相关的字段。

背景与需求

当前在OpenSearch中设置神经搜索需要手动配置多个相关字段,如knn_vector字段等。这一过程较为复杂,容易出错。为了解决这个问题,开发团队提出了一个自动化方案:通过定义新的字段类型,系统能够根据模型ID自动生成所有必要的神经搜索字段。

技术方案比较

团队考虑了两个主要的技术实现方案:

  1. ActionFilter方案
    利用现有的ActionFilter机制来修改创建/修改索引映射和索引模板的请求。这种方案的优势是不需要修改核心代码,但缺点是职责不清晰,ActionFilter被设计为通用机制,用于此特定场景显得不够专业。

  2. MapperPlugin扩展方案
    在MapperPlugin中引入新的MappingTransformer接口,让插件实现这个接口来转换映射。这种方案职责明确,但需要修改核心代码。

经过评估,团队倾向于选择第二种方案,因为它提供了更清晰的架构和职责划分。

技术实现细节

当用户创建包含新字段类型的索引时,系统会自动转换映射。例如,当用户定义如下索引:

{
   "settings":{
      "index.knn":true
   },
   "mappings":{
      "properties":{
         "id":{
            "type":"text"
         },
         "products":{
            "type":"nested",
            "properties":{
               "product_description":{
                  "type":"semantic",
                  "model_id":"oC31TZUBuSxkFaMuZlMo"
               }
            }
         }
      }
   }
}

系统会自动将其转换为包含所有必要神经搜索字段的完整映射,包括:

  • 原始字段保留
  • 语义信息字段(包含分块信息)
  • 模型元数据字段
  • 向量嵌入字段(包括维度、引擎类型等配置)

设计考量

在技术讨论中,团队考虑了是否可以在数据摄入时动态更新映射的方案。虽然技术上可行,但团队认为在添加语义字段时就生成所有相关字段更为合理,原因包括:

  1. 职责清晰:字段生成与字段定义保持同步
  2. 快速失败:可以在早期阶段验证模型有效性
  3. 性能考虑:避免在数据摄入时频繁更新映射

总结

OpenSearch的这一技术改进将显著简化神经搜索的设置过程,使开发者能够更专注于业务逻辑而非基础设施配置。通过引入Mapping Transformer机制,系统能够自动处理复杂的字段映射关系,提高开发效率并减少配置错误。这一设计体现了OpenSearch项目对开发者体验的持续关注和改进。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
178
262
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
866
513
ShopXO开源商城ShopXO开源商城
🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
129
183
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
261
302
kernelkernel
deepin linux kernel
C
22
5
cherry-studiocherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
598
57
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K