Azure Sentinel中网络会话异常告警无实体问题的分析与解决
问题背景
在Azure Sentinel安全监控实践中,用户报告了一个关于"Excessive number of failed connections"(连接失败次数过多)的告警触发问题。该告警源自Fortinet防火墙的监控数据,但触发后却未能显示任何关联实体信息,给安全分析带来了困扰。
问题现象
告警规则被触发后,在Azure Sentinel的告警详情页面中,实体(Entities)部分显示为空。这使得安全分析师无法直接识别出问题的源头IP地址或相关设备,增加了调查难度。
技术分析
告警规则工作机制
该告警规则基于Azure Sentinel的"Network Session Essentials"解决方案,其核心逻辑是通过KQL查询统计指定时间窗口内网络会话失败的数量。当失败次数超过预设阈值时触发告警。
实体缺失原因
经过技术团队深入分析,发现实体缺失主要有以下两个原因:
-
阈值设置问题:默认阈值(5000)可能设置过高,导致虽然触发了告警,但实际数据未能满足实体提取的条件。当降低阈值后,实体信息能够正常显示。
-
数据源特性:在本案例中,异常流量实际来源于Windows 11 24H2更新引入的打印服务问题。系统更新后,打印操作会触发UDP广播风暴,导致大量连接失败记录。
解决方案
临时解决方案
对于本案例中的特定问题,可通过以下注册表修改解决广播风暴问题:
[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Spooler\Printers]
"DeviceDiscovery"=dword:00000000
此修改会禁用打印设备的自动发现功能,从而避免UDP广播风暴。
长期优化建议
- 阈值调整:根据实际环境中的网络流量特征,适当调整告警规则的阈值参数。可使用以下KQL查询测试不同阈值下的效果:
let threshold = 1000; // 可根据实际情况调整
_Im_NetworkSession
| where EventResult == 'Failure'
| where isnotempty(SrcIpAddr)
| where TimeGenerated > ago(10h)
| summarize Count = count(),
DvcHostnames = make_list(DvcHostname),
DstHostnames = make_list(DstHostname),
EventOriginalResultDetails = make_list(EventOriginalResultDetails),
Process = make_list(Process),
InitiatingProcessFolderPath = make_list(InitiatingProcessFolderPath),
EventProduct = make_list(EventProduct),
Dst = make_list(Dst)
by SrcIpAddr, TimeBucket = bin(TimeGenerated, 5m), User
| where Count > threshold
| project TimeBucket, SrcIpAddr, Count, threshold, User, DvcHostnames, DstHostnames, EventOriginalResultDetails, Process, InitiatingProcessFolderPath, EventProduct, Dst
| order by Count desc
| take 10
-
实体映射优化:确保告警规则中正确配置了实体映射关系,特别是源IP地址(SrcIpAddr)到IP实体类型的映射。
-
数据源验证:定期验证数据连接器的数据质量,确保网络会话数据完整上传且格式符合预期。
最佳实践
-
分层阈值策略:建议采用分层阈值策略,针对不同网络区域设置不同的告警阈值,提高告警的准确性。
-
实体丰富化:在告警规则中添加更多上下文信息,如设备名称、用户信息等,便于快速定位问题。
-
定期规则评审:建立定期评审机制,根据网络环境变化调整告警规则参数。
-
根本原因分析:对于反复出现的告警,应深入分析根本原因,而非简单调整阈值。
总结
Azure Sentinel中的网络会话监控是安全运营的重要环节。通过本案例的分析,我们了解到告警规则配置需要结合实际环境特点进行优化。合理的阈值设置、完整的实体映射以及深入的根本原因分析,是确保安全监控有效性的关键要素。安全团队应建立持续优化的机制,使安全监控系统能够适应不断变化的网络环境。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00