Harvester项目中RKE2 Manifests与VM启动策略的兼容性问题分析
背景与问题现象
在Harvester项目v1.5版本中,用户通过os.write_files配置部署RKE2 Manifests时,如果其中包含设置runStrategy为RerunOnFailure的VirtualMachine资源,会导致整个Harvester集群部署过程卡住无法完成。该问题主要出现在集群初始化阶段,当VM资源尝试在存储网络准备就绪前启动时,会触发系统级阻塞。
技术原理分析
Harvester底层基于RKE2实现,支持通过自动部署清单功能(Auto-Deploying Manifests)在集群初始化时创建资源。问题核心在于:
-
启动顺序依赖:VirtualMachine资源若设置RerunOnFailure策略,会立即尝试启动,而此时Harvester的核心组件(如存储网络)可能尚未完全初始化。
-
设置校验机制:Harvester POD启动时会创建settings.harvesterhci CR对象,其中storage-network设置会检查运行中的VMI实例。当空值设置被创建时,若检测到有VM正在运行,会阻止POD继续启动。
-
资源竞争条件:在测试环境中,由于VM镜像下载耗时可能掩盖了该问题,导致问题表现不稳定。但在生产环境中,当VM资源无外部依赖(如直接使用现有PVC)时,问题会稳定复现。
解决方案实现
项目团队通过以下方式修复该问题:
-
启动顺序优化:修改settings控制器逻辑,在创建空值设置时跳过VM运行状态检查,允许Harvester核心组件优先完成初始化。
-
版本兼容性:该修复已包含在v1.5.1-rc2及后续版本中,同时被反向移植到v1.5稳定分支。
典型应用场景
该问题特别影响以下使用场景:
- 需要通过RKE2 Manifests在集群初始化时自动部署关键业务VM
- 使用cloud-init配置自动化部署生产环境
- 需要VM随集群启动自动恢复的高可用场景
用户建议
对于仍在使用受影响版本的用户,可采用以下临时解决方案:
- 将VM的runStrategy改为Manual,待集群完全启动后手动启动VM
- 在VM配置中添加适当的affinity规则,确保依赖服务就绪后再启动
- 对关键业务VM添加initContainer检查依赖服务可用性
技术启示
该案例揭示了Kubernetes生态系统中以下重要设计原则:
- 控制器启动顺序对系统稳定性的关键影响
- 声明式API中状态检查的边界条件处理
- 基础设施层与应用层的启动依赖管理
项目团队通过该修复增强了Harvester在复杂部署场景下的鲁棒性,为自动化部署提供了更可靠的底层支持。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









