语言风格转换项目使用教程
2024-09-15 23:21:09作者:吴年前Myrtle
1. 项目目录结构及介绍
language-style-transfer/
├── code/
│ ├── style_transfer.py
│ ├── options.py
│ └── ...
├── data/
│ └── yelp/
│ ├── x.0
│ ├── x.1
│ └── ...
├── img/
│ └── ...
├── tmp/
│ └── ...
├── .gitignore
├── LICENSE
├── README.md
└── download_model.sh
目录结构说明
- code/: 包含项目的主要代码文件,如
style_transfer.py和options.py。 - data/: 存放数据集的目录,例如Yelp评论数据集。
- img/: 存放项目相关的图片文件。
- tmp/: 用于存放训练模型和结果的临时文件夹。
- .gitignore: Git忽略文件配置。
- LICENSE: 项目许可证文件。
- README.md: 项目说明文档。
- download_model.sh: 下载预训练模型的脚本。
2. 项目启动文件介绍
style_transfer.py
这是项目的主要启动文件,负责训练和测试模型。可以通过命令行参数指定不同的操作模式(如训练、测试)和相关配置。
使用示例
-
训练模型:
python style_transfer.py --train /data/yelp/sentiment/train --dev /data/yelp/sentiment/dev --output /tmp/sentiment/dev --vocab /tmp/yelp/vocab --model /tmp/model -
测试模型:
python style_transfer.py --test /data/yelp/sentiment/test --output /tmp/sentiment/test --vocab /tmp/yelp/vocab --model /tmp/model --load_model true --beam 8
3. 项目配置文件介绍
options.py
该文件定义了项目运行时的各种配置选项,包括数据路径、输出路径、模型路径、词汇表路径等。用户可以通过命令行参数覆盖这些默认配置。
主要配置选项
- --train: 训练数据路径。
- --dev: 开发数据路径。
- --test: 测试数据路径。
- --output: 输出结果路径。
- --vocab: 词汇表路径。
- --model: 模型保存路径。
- --load_model: 是否加载预训练模型。
- --beam: 束搜索宽度。
配置示例
parser.add_argument('--train', type=str, default='', help='Path to the training data')
parser.add_argument('--dev', type=str, default='', help='Path to the development data')
parser.add_argument('--test', type=str, default='', help='Path to the test data')
parser.add_argument('--output', type=str, default='', help='Path to the output directory')
parser.add_argument('--vocab', type=str, default='', help='Path to the vocabulary file')
parser.add_argument('--model', type=str, default='', help='Path to the model directory')
parser.add_argument('--load_model', type=bool, default=False, help='Whether to load a pre-trained model')
parser.add_argument('--beam', type=int, default=8, help='Beam width for beam search')
通过以上配置,用户可以灵活地调整项目的运行参数,以适应不同的数据集和需求。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178