利用TensorFlow和Keras实现通用风格转换
该项目是《通过特征变换的通用风格转移》一文的TensorFlow与Keras版本实现。其核心是一个自编码器结构,该结构在预训练的VGG19图像分类网络的中间层进行重构。通过白化-着色变换(WCT),无需额外训练就能实现任意内容与风格图像间的风格转移。
官方的Torch实现可以在这里找到,而PyTorch版则可参考这个链接。
样例展示
以下是一段简单的样例,可以看到原始图片(左)和经过风格转换后的结果(右):
项目要求
- Python 3.x
- tensorflow 1.2.1+
- keras 2.0.x
- 已修改的
torchfile.py,兼容Windows - scikit-image
- 可选:OpenCV(用于
webcam.py)、ffmpeg(视频风格化)
预训练模型运行
- 下载VGG19模型:
bash models/download_vgg.sh - 获取五个解码器的检查点:
bash models/download_models.sh - 收集风格图片。好的资源包括Wikiart数据集和描述性纹理数据集
- 使用
webcam.py或stylize.py进行实时视频或图片的风格化。两个脚本都需要相同的参数。
例如,要运行一个从relu5_1到relu1_1的多级风格化管道:
python webcam.py --checkpoints models/relu5_1 models/relu4_1 models/relu3_1 models/relu2_1 models/relu1_1 --relu-targets relu5_1 relu4_1 relu3_1 relu2_1 relu1_1 --style-size 512 --alpha 0.8 --style-path /path/to/styleimgs
其他值得注意的参数包括风格路径、风格大小、混合系数、处理次数等,更多细节见项目文档。
Docker运行
- 下载VGG19模型:
bash models/download_vgg.sh - 获取解码器检查点:
bash models/download_models.sh - 在新的文件夹
images中保存风格图片。 - 安装nvidia-docker。
- 运行摄像头示例:
nvidia-docker build -t wct-tf . # 此步骤可能需几分钟。
xhost +local:root
nvidia-docker run \
-ti \
--rm \
-v $PWD/models:/usr/src/app/models \
-v $PWD/images:/usr/src/app/images \
-v /tmp/.X11-unix:/tmp/.X11-unix:rw \
-e QT_X11_NO_MITSHM=1 \
-e DISPLAY \
--device=/dev/video0:/dev/video0 \
wct-tf
训练解码器
-
下载MS COCO图像作为内容数据。
-
下载VGG19模型:
bash models/download_vgg.sh -
按照relu目标层分别训练解码器。例如,为了训练relu3_1的目标:
python train.py --relu-target relu3_1 --content-path /path/to/coco --batch-size 8 --feature-weight 1 --pixel-weight 1 --tv-weight 0 --checkpoint /path/to/checkpointdir --learning-rate 1e-4 --max-iter 15000 -
使用TensorBoard监控训练过程:
tensorboard --logdir /path/to/checkpointdir
风格交换(Style Swap)
此外,还包括一种风格交换方法,源于这篇论文。通过在内容编码中的局部区域替换与风格编码中最相似的邻近块,以增强风格转移的效果。在relu5_1层,这种方法在计算上是可行的,因为此处的特征编码尺寸较小。
注释
-
此代码库基于我对AdaIN-TF的实现,实现了Huang等人的实时自适应实例归一化方法。AdaIN操作在此处作为WCT的替代方案。
-
风格化管道可以以任何顺序连接解码器。例如,要复现原论文图5(d)中的反向精细到粗糙的管道,只需在
webcam.py或stylize.py中使用--relu-targets relu1_1 relu2_1 relu3_1 relu4_1 relu5_1选项。 -
coral.py实现了颜色关联对齐(CORAL),以从内容图像转移到风格图像的颜色,从而保持风格化的输出颜色。
总结,这是一个强大的工具,允许您轻松地为您的图像应用各种艺术风格,无论是实时视频还是静态图像。借助其灵活的架构和可训练的解码器,您可以探索无尽的风格可能性。现在就加入进来,发掘你的创意潜力吧!
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00