解决new-api项目接入Xinference Rerank模型的问题
问题背景
在使用new-api项目时,用户尝试将Xinference平台加载的Rerank模型(bge-reranker-v2-m3)集成到系统中。虽然直接通过Xinference端点测试模型功能正常,但在通过new-api渠道添加后却遇到了调用失败的问题。
错误现象
当用户通过new-api调用Rerank模型时,系统返回500错误,提示"not implemented"。后台日志显示"model ratio not found: bge-reranker-v2-m3"的错误信息,表明系统无法识别该模型。
问题分析
经过排查,发现问题的根源在于渠道配置不当:
-
渠道类型选择错误:用户最初选择了"OpenAI"作为渠道类型,这是不正确的配置方式。new-api项目并未内置对Xinference Rerank模型的直接兼容支持。
-
代理地址格式错误:用户在配置代理地址时包含了"/v1/rerank"路径,这会导致请求路由错误。
解决方案
正确的配置方法如下:
-
选择Jina渠道类型:在添加渠道时,应选择"Jina"作为渠道类型,而不是"OpenAI"。
-
简化代理地址:代理地址只需填写Xinference的基础地址(如http://xinference:9997),不需要包含"/v1/rerank"路径。
-
调用参数补充:在客户端调用Rerank模型时,必须包含top_n参数,否则可能返回空结果。
技术要点
-
渠道类型选择:不同的后端服务需要匹配对应的渠道类型。对于Xinference这类非标准OpenAI API的服务,通常需要使用Jina或其他兼容渠道类型。
-
地址配置原则:代理地址应该只包含服务的基础URL,具体的API路径由系统内部处理。
-
参数完整性:某些模型对输入参数有严格要求,缺少必要参数可能导致调用失败或返回异常结果。
总结
通过正确配置渠道类型和代理地址,可以成功将Xinference的Rerank模型集成到new-api项目中。这一案例提醒我们,在集成第三方服务时,需要充分了解服务接口规范和各参数的具体要求,才能确保系统间的正常交互。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00