Spotless项目中的Gradle源码集格式化支持探讨
2025-06-11 12:12:11作者:昌雅子Ethen
背景介绍
Spotless是一款流行的代码格式化工具,支持多种编程语言和开发环境。在Gradle构建系统中,Spotless通常被用来在编译前对代码进行格式化检查。然而,这种使用方式在某些情况下可能会导致开发体验问题。
当前问题分析
当Spotless在编译前运行时,如果代码存在语法错误,开发者首先会看到Spotless工具的错误提示,而不是编译器的错误信息。特别是对于Kotlin代码,ktlint等工具在遇到语法错误时提供的错误信息往往不够友好,这会增加开发者定位和修复问题的难度。
现有解决方案及其局限性
目前推荐的解决方案是使用Gradle的finalizedBy机制,将Spotless任务设置为编译任务的后置任务。这样可以在代码编译通过后再执行格式化检查,确保开发者首先看到的是编译错误。
然而,Gradle项目通常包含多个源码集(如main、test等),每个源码集都有独立的编译任务。而Spotless任务默认是基于整个项目的,这会导致以下问题:
- 当修改了测试代码(可能有语法错误)和主代码(无语法错误)时
- 编译主代码会成功
- 但随后触发的Spotless任务会检查所有源码集,包括测试代码
- 最终开发者仍然会先看到Spotless的错误,而不是测试代码的编译错误
潜在改进方向
源码集级别的Spotless任务
理想的解决方案是支持为每个源码集创建独立的Spotless任务。这样开发者可以:
- 将
compileKotlin任务与spotlessApplyMain任务关联 - 将
compileTestKotlin任务与spotlessApplyTest任务关联 - 确保每个源码集的格式化检查只在其编译成功后执行
技术实现考量
虽然Spotless目前没有直接支持这种细粒度的任务划分,但可以通过以下方式实现类似效果:
- 利用Gradle的任务依赖和条件执行机制
- 为每个源码集创建自定义的Spotless配置
- 通过Gradle API精确控制文件范围
需要注意的是,直接使用IDE钩子并逐个文件处理的方式可能会带来性能问题,因为Gradle的任务开销较大。
未来展望
Spotless团队已经注意到格式化工具错误信息不够友好的问题,并计划改进错误报告机制。同时,对于需要更细粒度控制的场景,开发者可以考虑创建自定义的Gradle任务或扩展Spotless插件功能。
对于Kotlin项目,随着ktlint等工具的不断改进,语法错误处理的体验也将逐步提升。在此期间,合理配置构建任务顺序仍然是保证开发效率的有效方法。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
420
3.22 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
685
160
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
666
React Native鸿蒙化仓库
JavaScript
266
326
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
Ascend Extension for PyTorch
Python
230
260