OneDiff加速AnimateDiff-CLI-Prompt-Travel项目的技术实践
2025-07-07 23:24:07作者:魏献源Searcher
背景介绍
AnimateDiff-CLI-Prompt-Travel是一个基于扩散模型的动画生成工具,它使用UNet3DConditionModel来处理视频帧序列。为了提高推理速度,我们尝试使用OneDiff的编译优化功能来加速UNet部分的计算。
技术挑战与解决方案
1. 算子兼容性问题
在最初的尝试中,直接使用oneflow_compile编译自定义UNet模型时遇到了算子不兼容的问题。具体表现为系统无法识别torch.nn.functional.interpolate中的最邻近插值操作。
解决方案: 我们实现了一个自定义的最邻近插值函数,避免了使用原生torch的interpolate函数。这个实现通过手动计算索引映射来完成插值操作:
def nearest_interpolate(input_tensor, size=None, scale_factor=None):
new_shape = list(input_tensor.shape)
if size is not None:
for i in range(2, 2 + len(size)):
new_shape[i] = size[i - 2]
if scale_factor is not None:
for i in range(2, 2 + len(scale_factor)):
new_shape[i] = int(new_shape[i] * scale_factor[i - 2])
output_tensor = torch.zeros(new_shape, dtype=input_tensor.dtype,
device=input_tensor.device.type)
index_k = (torch.arange(0, output_tensor.shape[-1]) /
output_tensor.shape[-1] * input_tensor.shape[-1]).int()
index_j = (torch.arange(0, output_tensor.shape[-2]) /
output_tensor.shape[-2] * input_tensor.shape[-2]).int()
index_i = (torch.arange(0, output_tensor.shape[-3]) /
output_tensor.shape[-3] * input_tensor.shape[-3]).int()
output_tensor = input_tensor[:, :, index_i][:, :, :, index_j][:, :, :, :, index_k]
return output_tensor
2. 版本兼容性问题
在开发过程中,我们发现使用特定分支的OneDiff会导致编译过程卡死。经过测试,切换到master分支后问题得到解决。
3. 类型转换限制
在实现自定义插值函数时,发现oneflow_compile不支持torch.tensor()方式的类型转换。我们改用.int()方法进行类型转换,解决了这个问题。
优化效果
通过上述解决方案,我们成功实现了:
- 使用oneflow_compile对UNet部分进行编译优化
- 对ControlNet部分也进行了相同的优化处理
- 整个推理流程能够正常运行
虽然自定义的插值函数比原生实现慢约5倍,但整体推理速度仍得到了显著提升。
经验总结
-
算子兼容性:在使用编译优化工具时,需要特别注意非标准算子的兼容性问题。对于不支持的算子,可以考虑实现自定义版本。
-
版本选择:不同版本的优化工具可能存在显著差异,遇到问题时可以尝试切换版本。
-
类型转换:编译优化环境可能对某些Python操作有限制,需要寻找替代实现方案。
-
性能权衡:在某些情况下,为了兼容性可能需要牺牲部分算子的性能,但整体仍能获得加速效果。
未来展望
随着OneDiff的持续发展,我们期待:
- 更多算子的原生支持
- 更智能的自动优化策略
- 更友好的错误提示机制
- 对复杂模型结构的更好支持
这次实践为在非标准扩散模型上应用编译优化提供了宝贵经验,也为类似项目的优化工作提供了参考。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
241
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
881