OneDiff加速AnimateDiff-CLI-Prompt-Travel项目的技术实践
2025-07-07 23:24:07作者:魏献源Searcher
背景介绍
AnimateDiff-CLI-Prompt-Travel是一个基于扩散模型的动画生成工具,它使用UNet3DConditionModel来处理视频帧序列。为了提高推理速度,我们尝试使用OneDiff的编译优化功能来加速UNet部分的计算。
技术挑战与解决方案
1. 算子兼容性问题
在最初的尝试中,直接使用oneflow_compile编译自定义UNet模型时遇到了算子不兼容的问题。具体表现为系统无法识别torch.nn.functional.interpolate中的最邻近插值操作。
解决方案: 我们实现了一个自定义的最邻近插值函数,避免了使用原生torch的interpolate函数。这个实现通过手动计算索引映射来完成插值操作:
def nearest_interpolate(input_tensor, size=None, scale_factor=None):
new_shape = list(input_tensor.shape)
if size is not None:
for i in range(2, 2 + len(size)):
new_shape[i] = size[i - 2]
if scale_factor is not None:
for i in range(2, 2 + len(scale_factor)):
new_shape[i] = int(new_shape[i] * scale_factor[i - 2])
output_tensor = torch.zeros(new_shape, dtype=input_tensor.dtype,
device=input_tensor.device.type)
index_k = (torch.arange(0, output_tensor.shape[-1]) /
output_tensor.shape[-1] * input_tensor.shape[-1]).int()
index_j = (torch.arange(0, output_tensor.shape[-2]) /
output_tensor.shape[-2] * input_tensor.shape[-2]).int()
index_i = (torch.arange(0, output_tensor.shape[-3]) /
output_tensor.shape[-3] * input_tensor.shape[-3]).int()
output_tensor = input_tensor[:, :, index_i][:, :, :, index_j][:, :, :, :, index_k]
return output_tensor
2. 版本兼容性问题
在开发过程中,我们发现使用特定分支的OneDiff会导致编译过程卡死。经过测试,切换到master分支后问题得到解决。
3. 类型转换限制
在实现自定义插值函数时,发现oneflow_compile不支持torch.tensor()方式的类型转换。我们改用.int()方法进行类型转换,解决了这个问题。
优化效果
通过上述解决方案,我们成功实现了:
- 使用oneflow_compile对UNet部分进行编译优化
- 对ControlNet部分也进行了相同的优化处理
- 整个推理流程能够正常运行
虽然自定义的插值函数比原生实现慢约5倍,但整体推理速度仍得到了显著提升。
经验总结
-
算子兼容性:在使用编译优化工具时,需要特别注意非标准算子的兼容性问题。对于不支持的算子,可以考虑实现自定义版本。
-
版本选择:不同版本的优化工具可能存在显著差异,遇到问题时可以尝试切换版本。
-
类型转换:编译优化环境可能对某些Python操作有限制,需要寻找替代实现方案。
-
性能权衡:在某些情况下,为了兼容性可能需要牺牲部分算子的性能,但整体仍能获得加速效果。
未来展望
随着OneDiff的持续发展,我们期待:
- 更多算子的原生支持
- 更智能的自动优化策略
- 更友好的错误提示机制
- 对复杂模型结构的更好支持
这次实践为在非标准扩散模型上应用编译优化提供了宝贵经验,也为类似项目的优化工作提供了参考。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
349
414
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
758